分析 由題意可得x+1>0,可得x+$\frac{4}{x+1}$=(x+1)+$\frac{4}{x+1}$-1,運(yùn)用基本不等式即可得到所求最小值,注意等號(hào)成立的條件.
解答 解:∵x>-1,∴x+1>0,
∴x+$\frac{4}{x+1}$=(x+1)+$\frac{4}{x+1}$-1
≥2$\sqrt{(x+1)•\frac{4}{x+1}}$-1=3,
當(dāng)且僅當(dāng)x+1=$\frac{4}{x+1}$,即x=1(-3舍去)時(shí)取等號(hào),
∴x+$\frac{4}{x+1}$的最小值為3,
故答案為:3.
點(diǎn)評(píng) 本題考查運(yùn)用基本不等式求最值,整體變形為可用基本不等式的形式是解決問題的關(guān)鍵,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?a∈R,函數(shù)f(x)是奇函數(shù) | B. | ?a∈R,函數(shù)f(x)是偶函數(shù) | ||
C. | ?a>0,函數(shù)f(x)在(-∞,0)上是減函數(shù) | D. | ?a>0,函數(shù)f(x)在(0,+∞)上是減函數(shù) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com