12.在函數(shù)y=sin|x|、y=|sinx|、y=sin(2x+$\frac{2π}{3}$)、y=tan(2x+$\frac{2π}{3}$)中,最小正周期為π的函數(shù)的個(gè)數(shù)為(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 利用y=Asin(ωx+φ)的周期等于 T=$\frac{2π}{ω}$,y=|Asin(ωx+φ)|的周期為$\frac{π}{ω}$,y=Atan(ωx+φ)的周期為$\frac{π}{ω}$,得出結(jié)論.

解答 解:∵函數(shù)y=sin|x|不是周期函數(shù),y=|sinx|是周期等于π的函數(shù),
y=sin(2x+$\frac{2π}{3}$)的周期等于$\frac{2π}{2}$=π,y=tan(2x+$\frac{2π}{3}$)的周期為$\frac{π}{2}$,
故這些函數(shù)中,最小正周期為π的函數(shù)的個(gè)數(shù)為2,
故選:B.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的周期性及其求法,利用了y=Asin(ωx+φ)的周期等于 T=$\frac{2π}{ω}$,y=|Asin(ωx+φ)|的周期為$\frac{π}{ω}$,y=Atan(ωx+φ)的周期為$\frac{π}{ω}$,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.某程序框圖如圖所示,當(dāng)輸出y的值為-8時(shí),則輸出x的值為16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)m是實(shí)數(shù),f(x)=m-$\frac{2}{{2}^{x}+1}$(x∈R)
(1)若函數(shù)f(x)為奇函數(shù),求m的值;
(2)試用定義證明:對(duì)于任意m,f(x)在R上為單調(diào)遞增函數(shù);
(3)若函數(shù)f(x)為奇函數(shù),且不等式f(k•3x)+f(3x-9x-2)<0對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在直角坐標(biāo)系中,直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}x=4t\\ y=3t-\frac{a}{4}\end{array}\right.$(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的單位長(zhǎng)度,且以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸)中,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)若直l線(xiàn)與圓C相切,求實(shí)數(shù)a的值;
(2)若點(diǎn)M的直角坐標(biāo)為(1,1),求過(guò)點(diǎn)M且與直線(xiàn)l垂直的直線(xiàn)m的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)是定義域R在上的奇函數(shù),且在區(qū)間[0,+∞)單調(diào)遞增,若實(shí)數(shù)a滿(mǎn)足f(log2a)+f(log2$\frac{1}{a}$)≤2f(1),則a的取值范圍是( 。
A.(-∞,2]B.$({0,\frac{1}{2}}]$C.$[{\frac{1}{2},2}]$D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)f(x)是區(qū)間[a,b]上的函數(shù),如果對(duì)任意滿(mǎn)足a≤x<y≤b的x,y都有f(x)≤f(y),則稱(chēng)f(x)是[a,b]上的升函數(shù),則f(x)是[a,b]上的非升函數(shù)應(yīng)滿(mǎn)足(  )
A.存在滿(mǎn)足x<y的x,y∈[a,b]使得f(x)>f(y)
B.不存在x,y∈[a,b]滿(mǎn)足x<y且f(x)≤f(y)
C.對(duì)任意滿(mǎn)足x<y的x,y∈[a,b]都有f(x)>f(y)
D.存在滿(mǎn)足x<y的x,y∈[a,b]都有f(x)≤f(y)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=$\sqrt{5}$.
(1)求證:PD⊥PB;
(2)求直線(xiàn)PB與平面PCD所成角的正弦值;
(3)在棱PA上是否存在點(diǎn)M,使得BM∥平面PCD?若存在,求$\frac{AM}{AP}$的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.sin(-690°)的值為( 。
A.$({\frac{{\sqrt{3}}}{2}})$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.定義在R上的函數(shù)f(x)的圖象關(guān)于直線(xiàn)x=2對(duì)稱(chēng),且f(x)滿(mǎn)足:對(duì)任意的x1,x2∈(-∞,2](x1≠x2)都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,且f(4)=0,則關(guān)于x不等式$\frac{f(x)}{x}<0$的解集是( 。
A.(-∞,0)∪(4,+∞)B.(0,2)∪(4,+∞)C.(-∞,0)∪(0,4)D.(0,2)∪(2,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案