5.設(shè)函數(shù)$f(x)=\frac{x}{2x-1}$,則$f(\frac{1}{4011})+f(\frac{2}{4011})+f(\frac{3}{4011})+…+f(\frac{4010}{4011})$=2005.

分析 推導(dǎo)出f(x)+f(1-x)=1,由此能求出$f(\frac{1}{4011})+f(\frac{2}{4011})+f(\frac{3}{4011})+…+f(\frac{4010}{4011})$.

解答 解:∵函數(shù)$f(x)=\frac{x}{2x-1}$,
∴f(x)+f(1-x)=$\frac{x}{2x-1}+\frac{1-x}{2(1-x)-1}$=1,
∴$f(\frac{1}{4011})+f(\frac{2}{4011})+f(\frac{3}{4011})+…+f(\frac{4010}{4011})$
=$\frac{1}{2}×$4010×1=2005.
故答案為:2005.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=e|x|,則$\int_{-2}^4{f(x)}dx$( 。
A.e4+e2-2B.e4-e2C.e4-e2+2D.e4-e2-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=sinx-bcosx(其中b為實數(shù))的圖象關(guān)于直線x=-$\frac{π}{6}$對稱,且?x1,x2∈R,且x1≠x2,f(x1)f(x2)≤4恒成立,則下列結(jié)論正確的是( 。
A.函數(shù)f(x)的圖象向左平移$\frac{π}{3}$個單位得到的函數(shù)是偶函數(shù)
B.不等式f(x1)f(x2)≤4取到等號時|x1-x2|的最小值為2π
C.函數(shù)f(x)的圖象的一個對稱中心為($\frac{2}{3}$π,0)
D.函數(shù)f(x)在區(qū)間[$\frac{π}{6}$,π]上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a是實數(shù),且$\frac{2a}{1+i}$+1+i是實數(shù),則a=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)定義在R上的函數(shù)f(x)=a0x4+a1x3+a2x2+a3x+a4,(a0,a1,a2,a3,a4∈R),當(dāng)x=-1時,f(x)取極大值$\frac{2}{3}$,且函數(shù)y=f(x)的圖象關(guān)于原點對稱.
(1)求y=f(x)的表達(dá)式;
(2)試在函數(shù)y=f(x)的圖象上求兩點,使以這兩點為切點的切線互相垂直,且切點的橫坐標(biāo)都在[-$\sqrt{2}$,$\sqrt{2}$]上;
(3)設(shè)xn=$\frac{{2}^{n}-1}{{2}^{n}}$,y=$\frac{\sqrt{2}(1-{3}^{m})}{{3}^{m}}$(m,n∈N+),求證:|f(xn)-f(ym)|<$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題是真命題的為(  )
A.若$\frac{1}{x}$=$\frac{1}{y}$,則x=yB.若x2≤4,則x=1C.若x=y,則$\sqrt{x}$=$\sqrt{y}$D.若x<y,則 x2<y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1與橢圓$\frac{x^2}{m^2}+\frac{y^2}{b^2}$=1(m>b>0)的離心率之積等于1,則以a,b,m為邊長的三角形一定是( 。
A.等腰三角形B.鈍角三角形C.銳角三角形D.直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.有編號為D1,D2,…,D10的10個零件,測量其直徑(單位:mm),得到下面數(shù)據(jù):
其中直徑在區(qū)間(148,152]內(nèi)的零件為一等品.
編號D1D2D3D4D5D6D7D8D9D10
直徑151148149151149152147146153148
(1)從上述10個零件中,隨機抽取2個,求這2個零件均為一等品的概率;
(2)從一等品零件中,隨機抽取2個.用ξ表示這2個零件直徑之差的絕對值,求隨機變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)命題p:實數(shù)a滿足不等式3a≤9,命題q:x2+3(3-a)x+9≥0的解集為R.已知“p∧q”為真命題,并記為條件r,且條件t:實數(shù)a滿足a<m或$a>m+\frac{1}{2}$.
(1)求條件r的等價條件(用a的取值范圍表示);
(2)若r是¬t的必要不充分條件,求正整數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案