A. | 90°的內(nèi)角 | B. | 60°的內(nèi)角 | C. | 45°的內(nèi)角 | D. | 30°的內(nèi)角 |
分析 先把已知條件等號左邊的分子分母利用同角三角函數(shù)間的基本關(guān)系切化弦后,分子分母都乘以cosAcosB后,利用兩角和與差的正弦函數(shù)公式化簡,右邊利用正弦定理化簡后,根據(jù)三角形的內(nèi)角和定理及誘導(dǎo)公式,得到2cosA=1,然后在等號兩邊都乘以sinA后,利用二倍角的正弦函數(shù)公式及誘導(dǎo)公式化簡后,即可得到2A=B+C,由A+B+C=180°,即可解得:A=60°.
解答 解:$\frac{tanA-tanB}{tanA+tanB}$=$\frac{\frac{sinA}{cosA}-\frac{sinB}{cosB}}{\frac{sinA}{cosA}+\frac{sinB}{cosB}}$=$\frac{sinAcosB-cosAsinB}{sinAcosB+cosAsinB}$=$\frac{sin(A-B)}{sin(A+B)}$=$\frac{c-b}{c}$=$\frac{sinC-sinB}{sinC}$,
因為sin(A+B)=sin(π-C)=sinC,得到sin(A-B)=sinC-sinB,
即sinB=sin(A+B)-sin(A-B)=2cosAsinB,
得到2cosA=1,即2sinAcosA=sinA,即sin2A=sinA=sin(B+C),
由2A+B+C≠π,得到2A=B+C,
因為A+B+C=180°
所以可解得:A=60°
故選:B.
點(diǎn)評 此題考查學(xué)生靈活運(yùn)用同角三角函數(shù)間的基本關(guān)系、兩角和與差的正弦函數(shù)公式以及誘導(dǎo)公式化簡求值,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p為假 | B. | ¬q為真 | C. | p∨q為真 | D. | p∧q為假 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x1,x2∈(0,2) | B. | x1,x2∈(1,2) | C. | x1,x2∈(2,+∞) | D. | x1∈(1,2),x2∈(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 1 | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com