10.若向量$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,$\overrightarrow a,\overrightarrow b$的夾角為120°,則$|{\overrightarrow a+\overrightarrow b}|$=$\sqrt{3}$.

分析 利用已知條件通過向量的數(shù)量積轉(zhuǎn)化求解向量的模即可.

解答 解:向量$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,$\overrightarrow a,\overrightarrow b$的夾角為120°,
則$|{\overrightarrow a+\overrightarrow b}|$=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow}^{2}+2\overrightarrow{a}•\overrightarrow}$=$\sqrt{4+1+2×2×1×(-\frac{1}{2})}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積的應(yīng)用,向量的模的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{0≤x≤2}\\{x+y-2≥0}\\{x-y+2≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=3x-4y的最小值m與最大值M的積為-60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.y=tanx的導(dǎo)數(shù)是( 。
A.$\frac{1}{{{{cos}^2}x}}$B.$-\frac{1}{{{{cos}^2}x}}$C.$\frac{cos2x}{{{{cos}^2}x}}$D.$-\frac{cos2x}{{{{cos}^2}x}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),α為l的傾斜角),曲線C的極坐標(biāo)方程為ρ2-6ρcosθ+5=0
(1)若直線l與曲線C相切,求α的值;
(2)設(shè)曲線C上任意一點(diǎn)為P(x,y),求x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題錯(cuò)誤的是( 。
A.命題“若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的逆否命題為:“若方程x2+x-m=0無實(shí)數(shù)根,則m≤0”.
B.對(duì)于命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0.
C.若p∧q為假命題,則p,q中至少一個(gè)為假命題.
D.“$θ=2kπ+\frac{π}{6}$”是“$sinθ=\frac{1}{2}$”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某箱子的容積V(x)與底面邊長(zhǎng)x的關(guān)系為$V(x)={x^2}•(\frac{60-x}{2})$,則當(dāng)箱子的容積最大時(shí),箱子底面邊長(zhǎng)為( 。
A.30B.40C.50D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:x2+(y-5)2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線y=-2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(1)求曲線C1的方程;
(2)設(shè)P(x0,y0)(x0≠±3)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線y=-4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的橫坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)$y=\frac{{\sqrt{3x+4}}}{x}$的定義域?yàn)閧x|x≥-$\frac{4}{3}$且x≠0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={y|y=$\sqrt{{x}^{2}-1}$},B={x|y=lg(x-2x2)},則A∩B=( 。
A.[1,+∞)B.[$\frac{1}{2}$,+∞)C.($\frac{1}{2}$,1)D.(0,$\frac{1}{2}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案