15.某箱子的容積V(x)與底面邊長(zhǎng)x的關(guān)系為$V(x)={x^2}•(\frac{60-x}{2})$,則當(dāng)箱子的容積最大時(shí),箱子底面邊長(zhǎng)為(  )
A.30B.40C.50D.以上都不正確

分析 求出函數(shù)的定義域,函數(shù)的導(dǎo)數(shù),利用函數(shù)的最值求解即可.

解答 解:某箱子的容積V(x)與底面邊長(zhǎng)x的關(guān)系為$V(x)={x^2}•(\frac{60-x}{2})$,可得x∈(0,60).
V′(x)=60x-$\frac{3}{2}{x}^{2}$,令60x-$\frac{3}{2}{x}^{2}$=0,可得x=40,當(dāng)x∈(0,40)時(shí),V′(x)>0,函數(shù)是增函數(shù),當(dāng)x∈(40,60)時(shí),
V′(x)<0,函數(shù)是減函數(shù),函數(shù)的最大值為:V(40)=16000.
此時(shí)x=40.
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的最值的求法、導(dǎo)數(shù)的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在數(shù)列{an}中,an=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$(n≥2),a1=1,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知數(shù)列{an}中,a3=2,a7=1,若$\{\frac{1}{{{a_n}+1}}\}$為等差數(shù)列,則a19=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x-y≥1\\ x+y≥1\\ 2x-y≤4\end{array}\right.$,則$z=\frac{{{y^2}+\frac{1}{3}xy+{x^2}}}{x^2}$的最大值與最小值的比值 為( 。
A.$\frac{12}{7}$B.$\frac{77}{75}$C.$\frac{95}{36}$D.$\frac{125}{77}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若向量$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,$\overrightarrow a,\overrightarrow b$的夾角為120°,則$|{\overrightarrow a+\overrightarrow b}|$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0,則稱x0是f(x)的一個(gè)不動(dòng)點(diǎn),已知函數(shù)f(x)=ax2+(b+1)x+(b-1)(a≠0),
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)x,y∈R,則“x≥1且y≥1”是“x2+y2≥2”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=2x2-4x-5.    
(1)當(dāng)x∈[-2,2]時(shí),求函數(shù)f(x)的最值;
(2)當(dāng)x∈[t,t+1]時(shí),求函數(shù)f(x)的最小值g(t);
(3)在第(2)問(wèn)的基礎(chǔ)上,求g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=ex+ax2(a∈R).
(1)若函數(shù)f(x)在R上單調(diào),且y=f′(x)有零點(diǎn),求a的值;
(2)若對(duì)?x∈[0,+∞),有$\frac{f(x)}{ax+1}$≥1,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案