11.已知函數(shù)f(x)=$\left\{\begin{array}{l}1-|x+1|,x<1\\{x^2}-4x+2,x≥1\end{array}$,則函數(shù)g(x)=2|x|f(x)-2的零點個數(shù)為(  )個.
A.1B.2C.3D.4

分析 由2|x|f(x)-2=0,可得f(x)=21-|x|,問題轉(zhuǎn)化為函數(shù)f(x)=$\left\{\begin{array}{l}1-|x+1|,x<1\\{x^2}-4x+2,x≥1\end{array}$,與h(x)=21-|x|的交點個數(shù).作出函數(shù)的圖象,可得結(jié)論.

解答 解:由2|x|f(x)-2=0,可得f(x)=21-|x|
問題轉(zhuǎn)化為函數(shù)f(x)=$\left\{\begin{array}{l}1-|x+1|,x<1\\{x^2}-4x+2,x≥1\end{array}$,與h(x)=21-|x|的交點個數(shù).
在同一坐標(biāo)系中,作出兩個函數(shù)的圖象,
可得交點有2個,所以函數(shù)g(x)=2|x|f(x)-2的零點個數(shù)為2個,
故選:B.

點評 本題考查函數(shù)零點的判斷,考查數(shù)形結(jié)合的數(shù)學(xué)思想,正確轉(zhuǎn)化,作出函數(shù)的圖象是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)數(shù)列{an}的通項公式an=2n-1,數(shù)列{bn}滿足a1b1+a2b2+a3b3+…+anbn=$\frac{20}{9}$+($\frac{2n}{3}$-$\frac{5}{9}$)×2${\;}^{2n+{2}^{\;}}$,則數(shù)列{bn}的通項公式bn=4n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在銳角△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,已知$\frac{\sqrt{3}}{3}$sin2C+cos(A+B)=0.
(Ⅰ)求C;
(Ⅱ)若a=4$\sqrt{3}$sinA,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=4tan(x+$\frac{π}{6}$)cos2(x+$\frac{π}{6}$)-1.
(Ⅰ)求f(x)的定義域與最小正周期;
(Ⅱ)討論f(x)在區(qū)間(0,$\frac{π}{3}$)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知F1、F2是橢圓C1與雙曲線C2的公共焦點,點P是C1與C2的公共點,若橢圓C1的離心率e1∈($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$],∠F1PF2=$\frac{π}{2}$,則雙曲線C2的離心率e2的最小值為( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)f(x)=x2+x在區(qū)間[x0,x0+△x]上的平均變化率,并求當(dāng)x0=1,△x=0.1時的平均變化率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在正項等比數(shù)列{an}和正項等差數(shù)列{bn}中,已知a1,a2017的等比中項與b1,b2017的等差中項相等,且$\frac{1}{_{1}}$+$\frac{4}{_{2017}}$≤1,當(dāng)a1009取得最小值時,等差數(shù)列{bn}的公差d的取值集合為( 。
A.{d|d≥$\frac{1}{672}$}B.{d|0<d<$\frac{1}{672}$}C.{$\frac{1}{672}$}D.{d|d≥$\frac{3}{2017}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x>0}\\{-{x}^{2}-4x,x≤0}\end{array}\right.$則此函數(shù)圖象上關(guān)于原點對稱的點有(  )
A.0對B.1對C.2對D.3對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.中心在原點的橢圓C1與雙曲線C2具有相同的焦點,F(xiàn)1(-c,0),F(xiàn)2(c,0),P為C1與C2在第一象限的交點,|PF1|=|F1F2|且|PF2|=5,若橢圓C1的離心率${e_1}∈({\frac{3}{5},\frac{2}{3}})$,則雙曲線的離心率e2的范圍是(  )
A.$({\frac{3}{2},\frac{5}{3}})$B.$({\frac{5}{3},2})$C.(2,3)D.$({\frac{3}{2},3})$

查看答案和解析>>

同步練習(xí)冊答案