分析 由a1b1+a2b2+a3b3+…+anbn=$\frac{20}{9}$+($\frac{2n}{3}$-$\frac{5}{9}$)×2${\;}^{2n+{2}^{\;}}$,n≥2時(shí),a1b1+a2b2+a3b3+…+an-1bn-1=$\frac{20}{9}$+($\frac{2(n-1)}{3}$-$\frac{5}{9}$)×22n,相減可得anbn=4n(2n-1),解得bn.n=1時(shí),a1b1=4,解得b1.
解答 解:由數(shù)列{an}的通項(xiàng)公式an=2n-1,
數(shù)列{bn}滿足a1b1+a2b2+a3b3+…+anbn=$\frac{20}{9}$+($\frac{2n}{3}$-$\frac{5}{9}$)×2${\;}^{2n+{2}^{\;}}$,
∴n≥2時(shí),a1b1+a2b2+a3b3+…+an-1bn-1=$\frac{20}{9}$+($\frac{2(n-1)}{3}$-$\frac{5}{9}$)×22n,
∴anbn=4n(2n-1),∴bn=4n.
n=1時(shí),a1b1=$\frac{20}{9}+\frac{1}{9}×{2}^{4}$=4,解得b1=4,上式對(duì)于n=1時(shí)也成立.
∴bn=4n.
故答案為:4n.
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、方程思想方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overline{{x}_{1}}$>$\overline{{x}_{2}}$,y1>y2 | B. | $\overline{{x}_{1}}$>$\overline{{x}_{2}}$,y1=y2 | C. | $\overline{{x}_{1}}$<$\overline{{x}_{2}}$,y1=y2 | D. | $\overline{{x}_{1}}$<$\overline{{x}_{2}}$,y1<y2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 196 | B. | 203 | C. | 28 | D. | 29 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com