分析 (1)利用二倍角和兩角和與差以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,結(jié)合三角函數(shù)的圖象和性質(zhì),即得到f(x)的值域.
(2)將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;在區(qū)間$[{-\frac{3π}{4},\frac{π}{2}}]$上為增函數(shù),即可ω的范圍,可得ω最大值.
解答 解:設(shè)$f(x)=2cos(ωx-\frac{π}{6})sinωx-\frac{1}{2}cos(2ωx+π)$,其中ω>0.
化簡可得:f(x)=2sinωxcosωxcos$\frac{π}{6}$+2sin2ωxsin$\frac{π}{6}$+$\frac{1}{2}$cos2ωx
=$\frac{\sqrt{3}}{2}$sin2ωx+($\frac{1}{2}$$-\frac{1}{2}$cos2ωx)+$\frac{1}{2}$cos2ωx
=$\frac{\sqrt{3}}{2}$sin2ωx+$\frac{1}{2}$
∵sin2ωx∈[-1,1]
∴f(x)∈$[{\frac{{1-\sqrt{3}}}{2},\frac{{1+\sqrt{3}}}{2}}]$
即函數(shù)f(x)值域是$[{\frac{{1-\sqrt{3}}}{2},\frac{{1+\sqrt{3}}}{2}}]$.
(2)由(1)可得f(x)=$\frac{\sqrt{3}}{2}$sin2ωx+$\frac{1}{2}$
∵y=f(x)在區(qū)間$[{-\frac{3π}{4},\frac{π}{2}}]$上為增函數(shù)
∴-$\frac{3π}{4}×2ω≥-\frac{π}{2}+2kπ$且$2ω×\frac{π}{2}≤\frac{π}{2}+2kπ$,(k∈Z)
解得:$ω≤\frac{1}{3}-\frac{4}{3}k$
∵ω>0.
∴${ω_{max}}=\frac{1}{3}$.
點(diǎn)評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線 | B. | 圓 | C. | 橢圓 | D. | 雙曲線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}π{a^3}$ | B. | πa3 | C. | $\frac{2}{3}π{a^3}$ | D. | $\frac{1}{3}π{a^3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com