15.若實(shí)數(shù)x,y滿足不等式$\left\{\begin{array}{l}x+3y-3≥0\\ 2x-y-3≥0\\ x-my+1≥0\end{array}\right.$,且x+y的最大值為9,則實(shí)數(shù)m=( 。
A.-2B.-1C.1D.2

分析 先根據(jù)約束條件畫出可行域,設(shè)z=x+y,再利用z的幾何意義求最值,只需求出直線x+y=9過可行域內(nèi)的點(diǎn)A時(shí),從而得到m值即可.

解答 解:先根據(jù)約束條件畫出可行域,
設(shè)z=x+y,
將最大值轉(zhuǎn)化為y軸上的截距,
當(dāng)直線z=x+y經(jīng)過直線x+y=9與直線2x-y-3=0的交點(diǎn)A(4,5)時(shí),z最大,
將m等價(jià)為斜率的倒數(shù),
數(shù)形結(jié)合,將點(diǎn)A的坐標(biāo)代入x-my+1=0得
m=1,
故選C.

點(diǎn)評 本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標(biāo)函數(shù)有唯一最優(yōu)解是我們最常見的問題,這類問題一般要分三步:畫出可行域、求出關(guān)鍵點(diǎn)、定出最優(yōu)解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如果函數(shù)y=f(x)在定義域內(nèi)存在區(qū)間[a,b],使f(x)在[a,b]上的值域是[2a,2b],那么稱f(x)為“倍增函數(shù)”.若函數(shù)f(x)=ln(ex+m)為“倍增函數(shù)”,則實(shí)數(shù)m的取值范圍是( 。
A.$(-\frac{1}{4},+∞)$B.$(-\frac{1}{2},0)$C.(-1,0)D.$(-\frac{1}{4},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$ (t為參數(shù),0<α<$\frac{π}{2}$),若以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos2θ+2cosθ=ρ(ρ≥0,0≤θ<2π),直線l與曲線C交于A,B兩點(diǎn).
(1)求證:$\overrightarrow{OA}$•$\overrightarrow{OB}$是定值;
(2)若定點(diǎn)P(1,0),且|PA|=2|PB|,求直線1的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=(2-m)lnx+\frac{1}{x}+2mx$.
(1)當(dāng)f'(1)=0時(shí),求實(shí)數(shù)的m值及曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則an=$\left\{\begin{array}{l}{1,n=1}\\{2,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.40+πB.40+2πC.40+3πD.40+4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,其右焦點(diǎn)到直線$x-y+2\sqrt{2}=0$的距離為3.
(1)求橢圓C的方程;
(2)設(shè)直線l:y=x+m,是否存在實(shí)數(shù)m,使直線l與橢圓C有兩個(gè)不同的交點(diǎn)M,N,且|AM|=|AN|,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$,x∈R
 (1)求f(x)的最小正周期及單調(diào)減區(qū)間;
(2)求f(x)在閉區(qū)間$[-\frac{π}{4}$,$\frac{π}{4}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.袋中有2個(gè)白球和4個(gè)黑球,每次從中任取一個(gè)球,每次取出的黑球不再放回,直到取出1個(gè)白球?yàn)橹梗笕∏虼螖?shù)X的概率分布列.

查看答案和解析>>

同步練習(xí)冊答案