13.已知直線y=x+1與曲線y=alnx相切,若a∈(n,n+1)(n∈N+),則n=3.(參考數(shù)據(jù):ln2≈0.7,ln3≈1.1)

分析 求導數(shù),確定切點的坐標,再構(gòu)造函數(shù),即可得出結(jié)論.

解答 解:∵f(x)=alnx,
∴f′(x)=$\frac{a}{x}$,
令$\frac{a}{x}$=1,可得x=a,故切點為(a,a+1),
代入y=alnx,可得a+1=alna.
構(gòu)造f(x)=x+1-xlnx,則f(3)=4-3ln3<0,f(4)=5-5ln5>0,
∴x∈(3,4),
∴a∈(3,4),
故答案為3.

點評 本題考查導數(shù)知識的運用,考查函數(shù)零點存在定理,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.定義運算 $|\begin{array}{l}{a}&\\{c}&chpowan\end{array}|$=ad-bc,若$|\begin{array}{l}{sinθ}&{2}\\{cosθ}&{3}\end{array}|$=0,則$\frac{3sinθ+2cosθ}{3sinθ-cosθ}$的值是4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,則函數(shù)y=f[f(x)]-1的零點個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,$AB=\sqrt{3}$,BC=1,PA=2,E為PD的中點.
(Ⅰ)求直線AC與PB所成角的余弦值;
(Ⅱ)在側(cè)面PAB內(nèi)找一點N,使NE⊥面PAC,求N點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.以下四個關于圓錐曲線命題:
①“曲線ax2+by2=1為橢圓”的充分不必要條件是“a>0,b>0”;
②若雙曲線的離心率e=2,且與橢圓$\frac{{y}^{2}}{24}$+$\frac{{x}^{2}}{8}$=1有相同的焦點,則該雙曲線的漸近線方程為y=±$\sqrt{3}$x;
③拋物線x=-2y2的準線方程為x=$\frac{1}{8}$;
 ④長為6的線段AB的端點A,B分別在x、y軸上移動,動點M(x,y)滿足$\overrightarrow{AM}$=2$\overrightarrow{MB}$,則動點M的軌跡方程為
$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{16}$=1.
其中正確命題的序號為③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+({a+1})x+2a,({x>0})\\{log_a}({x+1})+1,({-1<x≤0})\end{array}\right.$,(a<0,a≠1),若函數(shù)y=|f(x)|在$[{-\frac{1}{3},+∞})$上單調(diào)遞增,且關于x的方程|f(x)|=x+3恰有兩個不同的實根,則a的取值范圍為( 。
A.$[{\frac{3}{2},2})$B.$({1,\frac{3}{2}}]∪\left\{{2,6}\right\}$C.{2,6}D.$[{\frac{3}{2},\frac{5}{3}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.記集合A={x|x+2>0},B={y|y=cosx,x∈R}則A∪B=( 。
A.[-1.1]B.(-2,1]C.(-2,+∞)D.(-1,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若圓x2+y2-2x-2y=0上至少有三個不同點到直線l:y=kx的距離為$\frac{{\sqrt{2}}}{2}$,則直線l的傾斜角的取值范圍是( 。
A.[15°,45°]B.[15°,75°]C.[30°,60°]D.[0°,90°]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知圓C:(x+1)2+(y-2)2=4,則其圓心和半徑分別為( 。
A.(1,2),4B.(1,-2),2C.(-1,2),2D.(1,-2),4

查看答案和解析>>

同步練習冊答案