分析 (1)利用正弦定理,即可求此時(shí)無人機(jī)到甲、丙兩船的距離之比;
(2)若此時(shí)甲、乙兩船相距100米,由余弦定理求無人機(jī)到丙船的距離.
解答 解:(1)在△APB中,由正弦定理,得,$\frac{AP}{sin∠APB}=\frac{AB}{sin∠APB}=\frac{AB}{{\frac{1}{2}}}$,
在△BPC中,由正弦定理,得$\frac{CP}{sin∠CBP}=\frac{BC}{sin∠CPB}=\frac{BC}{1}$,
又$\frac{BC}{AB}=\frac{3}{1}$,sin∠ABP=sin∠CBP,
故$\frac{AP}{CP}=\frac{2}{3}$.即無人機(jī)到甲、丙兩船的距離之比為$\frac{2}{3}$.
(2)由BC:AB=3:1得AC=400,且∠APC=120°,
由(1),可設(shè)AP=2x,則CP=3x,
在△APC中,由余弦定理,得160000=(2x)2+(3x)2-2(2x)(3x)cos120°,
解得$x=\frac{400}{{\sqrt{19}}}=\frac{{400\sqrt{19}}}{19}$,
即無人機(jī)到丙船的距離為$CP=3x=\frac{{1200\sqrt{19}}}{19}$≈275米.
點(diǎn)評(píng) 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題,考查正弦定理、余弦定理的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有一個(gè)對(duì)稱中心$({\frac{π}{12},0})$ | B. | 有一條對(duì)稱軸$x=\frac{π}{6}$ | ||
C. | 在區(qū)間$[{-\frac{π}{12},\frac{5π}{12}}]$上單調(diào)遞減 | D. | 在區(qū)間$[{-\frac{5π}{12},\frac{π}{12}}]$上單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25 | B. | 49 | C. | -15 | D. | 40 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com