13.如圖,三棱錐P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E為PC的中點(diǎn),點(diǎn)F在PA上,且2PF=FA.
(1)求證:BE⊥平面PAC.
(2)求平面ABC與平面BEF所成的二面角的平面角(銳角)的余弦值.

分析 (1)推導(dǎo)出BE⊥PC,PB⊥AC,AC⊥BC,PB∩BC=B,從而AC⊥平面PBC,進(jìn)而AC⊥BE,由此能證明BE⊥平面PAC.
(2)建立空間直角坐標(biāo)系,利用向量法能求出平面ABC與平面BEF所成的二面角的平面角(銳角)的余弦值.

解答 證明:(1)因?yàn)锽P=BC,EP=EC,所以BE⊥PC…(2分)
因?yàn)镻B⊥平面ABC,所以PB⊥AC…(4分)
又AC⊥BC,PB∩BC=B,
所以AC⊥平面PBC,所以AC⊥BE.又PC∩AC=C…(5分)
所以BE⊥平面PAC…(6分)
(2)建立如圖所示的空間直角坐標(biāo)系…(7分)
則B(0,0,0),P(0,0,2),C(2,0,0),A(2,2,0),E(1,0,1),$F(\frac{2}{3},\frac{2}{3},\frac{4}{3})$
$\overrightarrow{BE}$=(1,0,0),$\overrightarrow{BF}$=($\frac{2}{3}$,$\frac{2}{3}$,$\frac{4}{3}$)…(8分)
設(shè)平面BEF的法向量為$\overrightarrow{n}$=x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BE}=x+z=0}\\{\overrightarrow{n}•\overrightarrow{BF}=\frac{2}{3}x+\frac{2}{3}y+\frac{4}{3}z=0}\end{array}\right.$,令x=1,得$\overrightarrow{n}$=(1,1,-1)…(9分)
取平面ABC的法向量$\overrightarrow{m}$=(0,0,1)…(10分)
則cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{-1}{\sqrt{3}}$=-$\frac{\sqrt{3}}{3}$.…(11分)
所以平面ABC與平面BEF所成的二面角的平面角(銳角)的余弦值為$\frac{{\sqrt{3}}}{3}$…(12分)

點(diǎn)評(píng) 本題考查線面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.現(xiàn)有4名同學(xué)去參加校學(xué)生會(huì)活動(dòng),共有甲、乙兩類活動(dòng)可供參加者選擇,為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪類活動(dòng),擲出點(diǎn)數(shù)為1或2的人去參加甲類活動(dòng),擲出點(diǎn)數(shù)大于2的人去參加乙類活動(dòng).
(1)求這4個(gè)人中恰有2人去參加甲類活動(dòng)的概率;
(2)用X,Y分別表示這4個(gè)人中去參加甲、乙兩類活動(dòng)的人數(shù).記ξ=|X-Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,平面ABC⊥平面α,且平面ABC∩平面α=BC,AB=1,BC=$\sqrt{3}$,∠ABC=$\frac{5π}{6}$,平面α內(nèi)一動(dòng)點(diǎn)P滿足∠PAB=$\frac{π}{6}$,則PC的最小值是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖所示,在三棱柱ABC-A1B1C1中,AB=AC,四邊形BCC1B1為矩形.
(1)求證△A1BC為等腰三角形;
(2)若$∠{A_1}BC=\frac{π}{3}$,AB⊥AC,平面A1BC⊥平面ABC,求二面角B-A1C-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知棱長(zhǎng)為2的正方體ABCD-A1B1C1D1,球O與該正方體的各個(gè)面相切,則平面ACB1截此球所得的截面的面積為( 。
A.$\frac{8π}{3}$B.$\frac{5π}{3}$C.$\frac{4π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在四棱錐P-ABCD中,△ABC,△ACD都為等腰直角三角形,∠ABC=∠ACD=90°,△PAC是邊長(zhǎng)為2的等邊三角形,PB=$\sqrt{2}$,E為PA的中點(diǎn).
(Ⅰ)求證:BE⊥平面PAD;
(Ⅱ)求二面角C-PA-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知f(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x,x<0}\\{f(x-1)+2,x≥0}\end{array}\right.$,則f(2)=( 。
A.4B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,曲線C的方程為y=3+$\sqrt{-{x}^{2}+8x-15}$.
(1)寫(xiě)出曲線C的一個(gè)參數(shù)方程;
(2)在曲線C上取一點(diǎn)P,過(guò)點(diǎn)P作x軸,y軸的垂線,垂足分別為A,B,求矩形OAPB的周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)$f(x)=x+\frac{1}{x}({x≠0})$,命題p:?x>0,f(x)≥2,命題q:?x0<0,f(x0)≤-2,則下列判斷正確的是( 。
A.p是假命題B.¬q是真命題C.p∨(¬q)是真命題D.(¬p)∧q是真命題

查看答案和解析>>

同步練習(xí)冊(cè)答案