4.已知函數(shù)f(x)是定義域在R上的奇函數(shù),當x>0時,f(x)=x2-2x-3
(1)求出函數(shù)f(x)在R上的解析式;
(2)畫出函數(shù)f(x)的圖象并寫出單調(diào)區(qū)間;
(3)證明:函數(shù)f(x)在[1,+∞)是增函數(shù).

分析 (1)只需求出x≤0時的表達式即可,設(shè)x<0,則-x>0,由x>0時,f(x)=x2-2x-3,可求f(-x),再根據(jù)奇函數(shù)性質(zhì)可求出f(x),及f(0).
(2)根據(jù)各段函數(shù)特征依次畫出即可;觀察圖象,從左向右呈上升趨勢為增函數(shù),呈下降趨勢則為減函數(shù),依此可寫出單調(diào)區(qū)間.
(3)求導數(shù),利用導數(shù)大于0,即可證明結(jié)論.

解答 解:(1)當x<0時,-x>0,∴f(-x)=x2+2x-3,
又∵f(x)是奇函數(shù)∴f(x)=-f(-x)=-x2-2x+3,
∴f(x)=-x2-2x+3,
當x=0時,f(-0)=-f(0),即f(0)=0.
所以f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-3,x>0}\\{0,x=0}\\{-{x}^{2}-2x+3,x<0}\end{array}\right.$.
(2)函數(shù)y=f(x)的示意圖如下:
     
單調(diào)遞增區(qū)間為:(-∞,-1),(1,+∞);單調(diào)遞減區(qū)間為:(-1,1).
(3)當x>1時,f(x)=x2-2x-3,f′(x)=2x-2>0,
∴函數(shù)f(x)在[1,+∞)是增函數(shù).

點評 本題考查函數(shù)解析式的求解,涉及函數(shù)的奇偶性,屬中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知f(x)=ex-e,則曲線y=f(x)在點(1,f(1))處的切線方程是y=ex-e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.不等式$\frac{(x-1)(x-2)}{{\sqrt{x-1}}}≥0$的解集為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知a>0且a≠1,(2a)m=a,(3a)m=2a,求證:($\frac{3}{2}$)mn=2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在直徑AB=4的圓上有長度為2的動弦CD,則$\overrightarrow{AC}•\overrightarrow{BD}$的最大值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知集合A={2,0,1,7},B={y|y=7x,x∈A},則A∩B={0,7}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.近年來鄭州空氣污染較為嚴重,現(xiàn)隨機抽取一年(365天)內(nèi)100天的空氣中PM2.5指數(shù)的監(jiān)測數(shù)據(jù),統(tǒng)計結(jié)果如下:
PM2.5[0,50](50,100](100,150](150,200](200,250](250,300]>300
空氣質(zhì)量優(yōu)輕微污染輕度污染中度污染中度重污染重度污染
天數(shù)413183091115
記某企業(yè)每天由空氣污染造成的經(jīng)濟損失為S(單位:元),PM2.5指數(shù)為x.當x在區(qū)間[0,100]內(nèi)時對企業(yè)沒有造成經(jīng)濟損失;當x在區(qū)間(100,300]內(nèi)時對企業(yè)造成經(jīng)濟損失成直線模型(當PM2.5指數(shù)為150時造成的經(jīng)濟損失為500元,當PM2.5指數(shù)為200時,造成的經(jīng)濟損失為700元);當PM2.5指數(shù)大于300時造成的經(jīng)濟損失為2000元.
(1)試寫出S(x)的表達式;
(2)試估計在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失S大于500元且不超過900元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷是否有95%的把握認為鄭州市本年度空氣重度污染與供暖有關(guān)?
附:
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.322.072.703.745.026.637.8710.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
非重度污染重度污染合計
供暖季22830
非供暖季63770
合計8515100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.直線l1:y=kx-1與直線l2:x+y-1=0的交點位于第一象限的充要條件是k>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)$f(x)={log_a}\frac{x+1}{x-1}(a>0,且a>0,且a≠1)$
(Ⅰ)判斷f(x)的奇偶性并證明;
(Ⅱ)若對于x∈[2,4],恒有$f(x)>{log_a}\frac{m}{(x-1)(7-x)}$成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案