14.若集合A={-1,0,1,2},B={y|y=2x+1,x∈A},則A∪B中元素的個數(shù)是(  )
A.4B.6C.7D.8

分析 把A中元素代入B中計算求出y的值,確定出B,找出兩集合的并集,即可作出判斷.

解答 解:由集合A={-1,0,1,2},B={y|y=2x+1,x∈A}={-1,1,3,5}
∴A∪B={-1,0,1,2,3,5},
則集合A∪B中元素的個數(shù)為6,
故選:B.

點評 此題考查了并集及其運算,熟練掌握并集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=x3+ax2+bx+c,(a,b,c均為非零整數(shù)),且f(a)=a3,f(b)=b3,a≠b,則c=( 。
A.16B.8C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{3}{x^3}-({2m+1}){x^2}+3m({m+2})x+1$,其中m為實數(shù).
(Ⅰ)當(dāng)m=-1時,求函數(shù)f(x)在[-4,4]上的最大值和最小值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知lg5=m,lg7=n,則log27=( 。
A.$\frac{m}{n}$B.$\frac{n}{1-m}$C.$\frac{1-n}{m}$D.$\frac{1+n}{1+m}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=\sqrt{6-2x}+lg(x+2)$的定義域為集合A,B={x|x>3或x<2}.
(1)求A∩B;
(2)若C={x|x<2a+1},B∩C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)$f(x)=\left\{\begin{array}{l}1+{log_5}x,x≥1\\ 2x-1,x<1\end{array}\right.$若f[f(0)+m]=2,則m等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知定義域為R的函數(shù)f(x)滿足$f(x-1)=2f(x+1)-{log_2}\sqrt{x}$,若f(1)=2,則f(3)=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=x|lnx|的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線:bx+ay=0與直線:x-2y+2=0垂直,則二次函數(shù)f(x)=ax2-bx+a的說法正確的是( 。
A.f(x)開口方向朝上B.f(x)的對稱軸為x=1C.f(x)在(-∞,-1)上遞增D.f(x)在(-∞,-1)上遞減

查看答案和解析>>

同步練習(xí)冊答案