12.雙曲線$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1的漸近線方程為( 。
A.y=±$\frac{4}{3}$xB.y=±$\frac{3}{4}$xC.y=±$\frac{16}{9}$xD.y=±$\frac{9}{16}$x

分析 由雙曲線方程與漸近線方程的關系,只要將雙曲線方程中的“1”換為“0”,化簡整理,可得漸近線方程.

解答 解:由雙曲線方程與漸近線方程的關系,可得
將雙曲線方程中的“1”換為“0”,
即有$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=0,即為y=±$\frac{4}{3}$x.
故選A.

點評 本題考查雙曲線的漸近線方程的求法,注意運用雙曲線方程與漸近線方程的關系,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)y=mx+b是R上的減函數(shù),則( 。
A.m≥0B.m≤0C.m>0D.m<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設全集U={2,4,3-a2},P={2,a2-a+2},∁UP={-1},則a=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知a=0.65.1,b=5.10.6,c=log0.65.1,則( 。
A.a<b<cB.c<a<bC.c<b<aD.a<c<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.f(x)=$\left\{\begin{array}{l}{lo{g}_{2}({2}^{x}-8),x>3}\\{f(x+2),x≤3}\end{array}\right.$,則f(2)=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知直線l:2x-y-2=0,點P(1,2).
(1)求過點P(1,2)與直線l平行的直線方程
(2)求過點P(1,2)與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知x,y滿足不等式組$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$,則z=x+y的最大值為( 。
A.8B.10C.12D.14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.不等式-2x-1<3的解集為( 。
A.(2,+∞)B.(-∞,2)C.(-2,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)y=loga(2x-3)+4的圖象恒過定點M,且點M在冪函數(shù)f(x)的圖象上,則f(3)=( 。
A.6B.8C.$\sqrt{3}$D.9

查看答案和解析>>

同步練習冊答案