【題目】已知函數(shù)f(x)=2sin(ωx﹣ )+2 sinωx,(ω>0)周期T∈[π,2π],x=π為函數(shù)f(x)圖象的一條對稱軸,
(1)求ω;
(2)求f(x)的單調(diào)遞增區(qū)間.

【答案】
(1)解:∵函數(shù)f(x)=2sin(ωx﹣ )+2 sinωx=2sinωx(﹣ )﹣2cosωx +2 sinωx

= sinωx﹣cosωx=2sin(ωx﹣ )(ω>0)周期T= ∈[π,2π],∴1≤ω≤2.

∵x=π為函數(shù)f(x)圖象的一條對稱軸,∴ωπ﹣ =kπ+ ,即ω=k+ ,k∈Z,

∴ω=


(2)解:∵f(x)=2sin( x﹣ ),令2kπ﹣ x﹣ ≤2kπ+ ,求得 ≤x≤ + ,

可得f(x)的調(diào)遞增區(qū)間為[ + ],k∈Z


【解析】(1)利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性以及圖象的對稱性求得ω的值.(2)利用正弦函數(shù)的調(diào)性,求得f(x)的單調(diào)遞增區(qū)間.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦函數(shù)的單調(diào)性的相關(guān)知識可以得到問題的答案,需要掌握正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足2Sn=2n+1+λ(λ∈R). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4月23人是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動,為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對其課外閱讀時間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時間不低于60分鐘的學(xué)生稱為“讀書謎”,低于60分鐘的學(xué)生稱為“非讀書謎”
(1)求x的值并估計(jì)全校3000名學(xué)生中讀書謎大概有多少?(經(jīng)頻率視為頻率)

非讀書迷

讀書迷

合計(jì)

15

45

合計(jì)


(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書謎”與性別有關(guān)? 附:K2= n=a+b+c+d

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次考試中,5名同學(xué)的數(shù)學(xué)、物理成績?nèi)绫硭荆?/span>

學(xué)生

A

B

C

D

E

數(shù)學(xué)(x)

89

91

93

95

97

物理(y)

87

89

89

92

93

(1)根據(jù)表中數(shù)據(jù),求物理分y關(guān)于數(shù)學(xué)分x的回歸方程,并試估計(jì)某同學(xué)數(shù)學(xué)考100分時,他的物理得分;

(2)要從4名數(shù)學(xué)成績在90分以上的同學(xué)中選出2名參加一項(xiàng)活動,以X表示選中的同學(xué)中物理成績高于90分的人數(shù),試解決下列問題:

①求至少選中1名物理成績在90分以下的同學(xué)的概率;

②求隨機(jī)變變量X的分布列及數(shù)學(xué)期望

附:回歸方程:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|xex+1|,關(guān)于x的方程f2(x)+2sinαf(x)+cosα=0有四個不等實(shí)根,sinα﹣cosα≥λ恒成立,則實(shí)數(shù)λ的最大值為(
A.﹣
B.﹣
C.﹣
D.﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,a,b,c分別為∠A,∠B,∠C的對邊,且滿足(2c﹣b)tanB=btanA.
(1)求A的大小;
(2)求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合為下述條件的函數(shù)的集合:①定義域?yàn)?/span>;②對任意實(shí)數(shù),都有

1)判斷函數(shù)是否為中元素,并說明理由;

2)若函數(shù)是奇函數(shù),證明:;

3)設(shè)都是中的元素,求證:也是中的元素,并舉例說明,不一定是中的元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB與△PAD都是等邊三角形,平面ABCD⊥平面PBD.
(I)證明:CD⊥平面PBD;
(II)求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= sin ,若存在f(x)的極值點(diǎn)x0滿足x02+[f(x0)]2<m2 , 則m的取值范圍是(
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案