2.如圖,在高速公路建設中需要確定隧道的長度,工程技術人員已測得隧道兩端的兩點A、B到點C的距離AC=BC=1km,且∠ACB=120°,則A、B兩點間的距離為(  )
A.$\sqrt{3}$kmB.$\sqrt{2}$kmC.1.5kmD.2km

分析 直接利用與余弦定理求出AB的數(shù)值.

解答 解:根據(jù)余弦定理 AB2=a2+b2-2abcosC,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}-2AC•BCcos120°}$=$\sqrt{1+1+2×1×1×\frac{1}{2}}$=$\sqrt{3}$(km).
故選:A.

點評 本題是基礎題,考查余弦定理的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.一個口袋中裝有大小形狀完全相同的n+3個乒乓球,其中1個乒乓球上標有數(shù)字1,2個乒乓球上標有數(shù)字2,其余n個乒乓球上均標有數(shù)字3(n∈N*),若從這個口袋中隨機地摸出2個乒乓球,恰有一個乒乓球上標有數(shù)字2的概率是$\frac{8}{15}$.
(1)求n的值;
(2)從口袋中隨機地摸出2個乒乓球,設ξ表示所摸到的2個乒乓球上所標數(shù)字之和,求ξ的分布列和數(shù)學期望Eξ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{an}滿足:Sn+1•Sn=an+1,又${a_1}=\frac{2}{9}$,
(1)求證:數(shù)列$\{\frac{1}{S_n}\}$為等差數(shù)列;
(2)求an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在數(shù)列{an}中,前n項和為Sn,${a_n}=(3n-19)•{e^n}$,則當Sn最小時,n的值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B+sinB=2sin C.
(1)求角A;
(2)若a=4$\sqrt{3}$,b+c=8,求△ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}sinx,sinx≥cosx\\ cosx,sinx<cosx\end{array}$,下列說法正確的是(  )
A.該函數(shù)值域為[-1,1]
B.當且僅當x=2kπ+$\frac{π}{2}$(k∈Z)時,函數(shù)取最大值1
C.該函數(shù)是以π為最小正周期的周期函數(shù)
D.當π+2kπ<x<2kπ+$\frac{3π}{2}$(k∈Z)時,f(x)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.要得到函數(shù)$y=\sqrt{2}sinx$的圖象,只需將函數(shù)$y=\sqrt{2}cos(2x-\frac{π}{4})$的圖象上所有的點(  )
A.橫坐標伸長到原來的2倍(縱坐標不變),再向左平行移動$\frac{π}{8}$個單位長度
B.橫坐標伸長到原來的2倍(縱坐標不變),再向右平行移動$\frac{π}{4}$個單位長度
C.橫坐標縮短到原來的$\frac{1}{2}$倍(縱坐標不變),再向右平行移動$\frac{π}{4}$個單位長度
D.橫坐標縮短到原來的$\frac{1}{2}$倍(縱坐標不變),再向左平行移動$\frac{π}{8}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=sinx+sin|x|在區(qū)間[-π,π]上的值域為( 。
A.[-1,1]B.[0,2]C.[-2,2]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設全集U={x∈N|x≥2},集合A={x∈N|x2≥5},則∁UA=( 。
A.B.{2}C.{2,5}D.[2,$\sqrt{5}$)

查看答案和解析>>

同步練習冊答案