分析 (1)線線垂直轉化為證明線面垂直,連接BD.PD⊥平面ABCD,可得PD⊥AC,BD⊥AC,可知AC⊥平面PBD,故得AC⊥PB;
(2)異面直線所成的角要轉化為平面角,通過平移相交尋找.底面ABCD是正方形,AD∥BC,可得異面直線PB與AD所成角為∠PBC.在三角形PBC中求解∠PBC的余弦值即可.
解答 解:(1)證明:連接BD.
∵PD⊥平面ABCD,
∴PD⊥AC,
∵底面ABCD是正方形,
∴BD⊥AC,
又PD∩BD=D,
∴AC⊥平面PBD,
∵PB?平面PBD,
∴AC⊥PB.得證.
(2)在Rt△PDB中,$PB={3^2}+{(2\sqrt{2})^2}=\sqrt{17}$.
∵PD⊥平面ABCD,
∴PD⊥BC,又BC⊥CD,
∴BC⊥平面PCD,
∴BC⊥PC.
∵BC∥AD,
∴∠PBC即為異面直線PB與AD所成的角,
∴$cos∠PBC=\frac{BC}{PB}=\frac{{2\sqrt{17}}}{17}$.
故得異面直線PB與AD所成角的余弦值為$\frac{2\sqrt{17}}{17}$.
點評 本題考查兩條垂直的證明和異面直線所成角的大小的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3個 | B. | 2個 | C. | 1個 | D. | 0個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $?p:?x>2,{log_2}(x+\frac{4}{x})≤2$且¬p為真命題 | |
B. | $?p:?x≤2,{log_2}(x+\frac{4}{x})>2$且¬p為真命題 | |
C. | $?p:?x>2,{log_2}(x+\frac{4}{x})≤2$且¬p為假命題 | |
D. | $?p:?x≤2,{log_2}(x+\frac{4}{x})>2$且¬p為假命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | M∩N=M | B. | M∪(∁UN)=U | C. | M∩(∁UN)=∅ | D. | M⊆∁UN |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{n}{2n+1}$ | B. | $\frac{n}{2n-1}$ | C. | $\frac{n}{2n-3}$ | D. | $\frac{n}{2n+3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 | 頻率/組距 |
… | … | … | … |
[180,185) | x | y | z |
[185,190) | m | n | p |
… | … | … | … |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com