4.在等差數(shù)列{an}中,a10=$\frac{1}{2}$a14-6,則數(shù)列{an}的前11項和等于( 。
A.132B.66C.-132D.-66

分析 設(shè)其公差為d,利用等差數(shù)列的通項公式得到a6=-12.所以由等差數(shù)列的性質(zhì)求得其前n項和即可.

解答 解:∵數(shù)列{an}為等差數(shù)列,設(shè)其公差為d,
∵a10=$\frac{1}{2}$a14-6,
∴a1+9d=$\frac{1}{2}$(a1+13d)-6,
∴a1+5d=-12,即a6=-12.
∴數(shù)列{an}的前11項和S11=a1+a2+…+a11
=(a1+a11)+(a2+a10)+…+(a5+a7)+a6
=11a6
=-132.
故選:C.

點評 本題考查了等差數(shù)列的通項公式,考查了等差數(shù)列的前n項和,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,左焦點是F1
(1)若左焦點F1與橢圓E的短軸的兩個端點是正三角形的三個頂點,點$Q({\sqrt{3},\frac{1}{2}})$在橢圓E上.求橢圓E的方程;
(2)過原點且斜率為t(t>0)的直線l1與(1)中的橢圓E交于不同的兩點G,H,設(shè)B1(0,1),A1(2,0),求四邊形A1GB1H的面積取得最大值時直線l1的方程;
(3)過左焦點F1的直線l2交橢圓E于M,N兩點,直線l2交直線x=-p(p>0)于點P,其中p是常數(shù),設(shè)$\overrightarrow{PM}=λ\overrightarrow{M{F_1}}$,$\overrightarrow{PN}=μ\overrightarrow{N{F_1}}$,計算λ+μ的值(用p,a,b的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知i是虛數(shù)單位,復(fù)數(shù)$z=\frac{{{{({1+i})}^2}+3({1-i})}}{2+i}$,若z2+az+b=1+i,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合A={x|y=lg(x-2)},集合B={x|y=$\sqrt{3-x}$},則A∩B=( 。
A.{x|x<2}B.{x|x≤2}C.{x|2<x≤3}D.{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若$\frac{2co{s}^{2}α+cos(\frac{π}{2}+2α)-1}{\sqrt{2}sin(2α+\frac{π}{4})}$=4,則tan(2α+$\frac{π}{4}$)=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,點P在雙曲線的左支上,且PF與圓x2+y2=a2相切于點M,若M恰為線段PF的中點,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{10}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),若f(ax+1)≤f(x-2)在$x∈[{\frac{1}{2}\;,\;1}]$上恒成立,則實數(shù)a的取值范圍是(  )
A.[-2,1]B.[-2,0]C.[-1,1]D.[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.角θ的頂點與原點重合,始邊與x軸非負(fù)半軸重合,終邊在直線y=2x上,則tan2θ=( 。
A.2B.-4C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)y=f(x)是定義在R上的周期為2的奇函數(shù),則f(2017)=( 。
A.-2017B.0C.1D.2017

查看答案和解析>>

同步練習(xí)冊答案