【題目】已知橢圓過點(diǎn),其左、右兩個焦點(diǎn)分別為,,短軸的一個端點(diǎn)為,且.
(1)求的平分線所在的直線方程;
(2)設(shè)直線:與橢圓交于不同的兩點(diǎn),.且為坐標(biāo)原點(diǎn),若,求的面積的最大值.
【答案】(1)(2)
【解析】
(1)根據(jù)橢圓過點(diǎn),且得到,從而解得橢圓的方程,設(shè)角平分線與軸交于,易得,,利用角平分線定理,可得.由點(diǎn)寫出的方程.
(2)設(shè),.,與橢圓方程聯(lián)立,根據(jù)判別式大于零和求得k的范圍,再由求解.
(1)由題意得,解得,
所以橢圓的方程為.
設(shè)角平分線與軸交于,
因?yàn)?/span>,,
所以,,
所以,
所以,解得.
因?yàn)橹本的斜率,
所以直線的方程為,即.
(2)設(shè),.則,消去y得:
∴,
由,,,
得.①
由,得,所以.
又.
∴,
,
所以.②
綜合①②可知.
,
令,則,,
所以,
因?yàn)?/span>在上單調(diào)遞增.
所以在上單調(diào)遞減,
當(dāng),即時,的面積最大,最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn)且離心率為.
(1)求橢圓的方程;
(2)如圖所示,設(shè)橢圓的右頂點(diǎn)為,,是橢圓上異于點(diǎn)的兩點(diǎn),直線,的斜率分別為,,若,試判斷直線是否經(jīng)過一個定點(diǎn)?若是,則求出該定點(diǎn)的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是等腰梯形,且,,,四邊形是矩形,,點(diǎn)為上的一動點(diǎn).
(1)求證:;
(2)當(dāng)時,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的極值;
(2)是否存在實(shí)數(shù),使得不等式在上恒成立?若存在,求出的最小值:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫算,是一種格子乘法,也是筆算乘法的一種,用以區(qū)別籌算與珠算,它由明代數(shù)學(xué)家吳敬在其撰寫的《九章算法比類大全》一書中提出,是從天元式的乘法演變而來.例如計(jì)算,將被乘數(shù)89計(jì)入上行,乘數(shù)65計(jì)入右行.然后以乘數(shù)65的每位數(shù)字乘被乘數(shù)89的每位數(shù)字,將結(jié)果計(jì)入相應(yīng)的格子中,最后從右下方開始按斜行加起來,滿十向上斜行進(jìn)一,如圖,即得5785.類比此法畫出的表格,若從表內(nèi)(表周邊數(shù)據(jù)不算在內(nèi))任取一數(shù),則恰取到奇數(shù)的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果兩個方程的曲線經(jīng)過若干次平移或?qū)ΨQ變換后能夠完全重合,則稱這兩個方程為“互為鏡像方程對”,給出下列四對方程:
①與②與
③與④與
則“互為鏡像方程對”的是( )
A.①②③B.①③④C.②③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,右頂點(diǎn)為.若(為坐標(biāo)原點(diǎn))的三個內(nèi)角大小成等差數(shù)列.
(1)求橢圓的離心率;
(2)直線與橢圓交于兩點(diǎn),設(shè)直線,若面積的最大值為,且該橢圓短軸長小于焦距,求橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),點(diǎn)在軸負(fù)半軸上,以為邊做菱形,且菱形對角線的交點(diǎn)在軸上,設(shè)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)過點(diǎn),其中,作曲線的切線,設(shè)切點(diǎn)為,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時曲線在點(diǎn)處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com