12.一個長方體的棱長分別為1、2、2,它的頂點都在同一個球面上,這個球的體積為( 。
A.$\frac{9}{4}π$B.$\frac{9}{2}π$C.18πD.36π

分析 先求長方體的對角線的長度,就是球的直徑,然后求出它的體積.

解答 解:長方體的體對角線的長是:$\sqrt{1+4+4}$=3
球的半徑是:$\frac{3}{2}$
這個球的體積:$\frac{4}{3}π•(\frac{3}{2})^{3}$=$\frac{9}{2}π$
故選B.

點評 本題考查球的內(nèi)接體,球的體積,考查空間想象能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知等差數(shù)列{an}的前n項和為Sn,且3a3=a6+4若S5<10,則a2的取值范圍是(  )
A.(-∞,2)B.(-∞,0)C.(1,+∞)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.等差數(shù)列{an}中,a1+a4+a7=39,a2+a5+a8=33,則a4+a7+a10的值為(  )
A.30B.27C.24D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列結(jié)論錯誤的是( 。
A.命題“若x2-3x-4=0,則x=4”的逆否命題為“若x≠4,則x2-3x-4≠0”.
B.“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充要條件.
C.命題“若m>0,則方程x2+x-m=0有實根”的逆命題為真命題.
D.命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n≠0”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合P={1,2,3,4},則集合Q={x-y|x∈P,y∈P}中所含元素的個數(shù)是( 。
A.16B.9C.7D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在平面直角坐標系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,橢圓E的頂點四邊形的面積為4$\sqrt{3}$.
(1)求橢圓E的方程;
(2)過橢圓E內(nèi)一點P(1,1)的直線l與橢圓交于M、N兩點,若$\overrightarrow{MP}=\overrightarrow{PN}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=\frac{ax}{{{x^2}+1}}(x∈R)$,如圖是函數(shù)f(x)在[0,+∞)上的圖象.
(1)求a的值,并判斷函數(shù)的奇偶性補充作出函數(shù)f(x)在(-∞,0)上的圖象,說明作圖的理由;
(2)根據(jù)圖象指出(不必證明)函數(shù)的單調(diào)區(qū)間與值域;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=x3-$\frac{9}{2}$x2+5x-a.
(1)當(dāng)a=$\frac{1}{2}$時,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(2)對?x∈R,都有f′(x)≥m恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx,g(x)=$\frac{m(x+n)}{x+1}$(m>0).
(Ⅰ)若函數(shù)y=f(x)與y=g(x)在x=1處有相同的切線,求m的值;
(Ⅱ)若函數(shù)y=f(x)-g(x)在定義域內(nèi)不單調(diào),求m-n的取值范圍;
(Ⅲ)若?x>0,恒有|f(x)|≥|g(x)|成立,求實數(shù)m的最大值.

查看答案和解析>>

同步練習(xí)冊答案