分析 (1)a=1,f(x)=x2-|x|+1,對(duì)x分類討論,通過(guò)配方,利用二次函數(shù)的單調(diào)性即可得出.
(2)由于a>0,當(dāng)x∈[1,2]時(shí),f(x)=ax2-x+2a-1=a$(x-\frac{1}{2a})^{2}$+2a-$\frac{1}{4a}$-1.對(duì)a分類討論,利用二次函數(shù)的單調(diào)性即可得出.
(3)h(x)=ax+$\frac{2a-1}{x}$-1在區(qū)間[1,2]上任取x1、x2,可得h(x2)-h(x1)=$\frac{{x}_{2}-{x}_{1}}{{x}_{1}{x}_{2}}$[ax1x2-(2a-1)]>0,可得:ax1x2-(2a-1)>0對(duì)任意x1、x2∈[1,2],且x1<x2都成立,即ax1x2>2a-1.對(duì)a分類討論即可得出.
解答 解:(1)a=1,f(x)=x2-|x|+1=$\left\{\begin{array}{l}{{x}^{2}-x+1,x≥0}\\{{x}^{2}+x+1,x<0}\end{array}\right.$
=$\left\{\begin{array}{l}{(x-\frac{1}{2})^{2}+\frac{3}{4},x≥0}\\{(x+\frac{1}{2})^{2}+\frac{3}{4},x<0}\end{array}\right.$.
∴f(x)的單調(diào)增區(qū)間為($\frac{1}{2}$,+∞),(-$\frac{1}{2}$,0).
f(x)的單調(diào)減區(qū)間為(-∞,$-\frac{1}{2}$],(0,$\frac{1}{2}$).
(2)由于a>0,當(dāng)x∈[1,2]時(shí),f(x)=ax2-x+2a-1=a$(x-\frac{1}{2a})^{2}$+2a-$\frac{1}{4a}$-1.
①若$0<\frac{1}{2a}$<1,即a$>\frac{1}{2}$,則f(x)在[1,2]為增函數(shù)g(a)=f(2)=6a-3.
②若$1≤\frac{1}{2a}$≤$\frac{3}{2}$,即$\frac{1}{3}≤a≤\frac{1}{2}$,g(a)=f(2)=6a-3.
③若$\frac{3}{2}<\frac{1}{2a}$≤2,即$\frac{1}{4}≤a<\frac{1}{3}$時(shí),
④若$\frac{1}{2a}≥2$,即$0<a≤\frac{1}{4}$時(shí),f(x)在[1,2]上是減函數(shù):g(a)=f(1)=3a-2.
綜上可得g(a)=$\left\{\begin{array}{l}{6a-3,\frac{1}{3}≤a<\frac{1}{2}}\\{3a-2,0<a<\frac{1}{3}}\end{array}\right.$.
(3)h(x)=ax+$\frac{2a-1}{x}$-1在區(qū)間[1,2]上任取x1、x2,
則h(x2)-h(x1)=ax2+$\frac{2a-1}{{x}_{2}}$-1-$(a{x}_{1}+\frac{2a-1}{{x}_{1}}-1)$=$\frac{{x}_{2}-{x}_{1}}{{x}_{1}{x}_{2}}$[ax1x2-(2a-1)](*)
∵h(yuǎn)(x)在[1,2]上是增函數(shù),∴h(x2)-h(x1)>0,
∴(*)可轉(zhuǎn)化為ax1x2-(2a-1)>0對(duì)任意x1、x2∈[1,2],且x1<x2都成立,即ax1x2>2a-1.
①當(dāng)a=0時(shí),上式顯然成立.
②a>0,x1x2>$\frac{2a-1}{a}$,由1<x1x2<4得$\frac{2a-1}{a}$≤1,解得0<a≤1.
③a<0,x1x2<$\frac{2a-1}{a}$,由1<x1x2<4得,$\frac{2a-1}{a}$≥4,解得-$\frac{1}{2}≤$a<0.
所以實(shí)數(shù)a的取值范圍是$[-\frac{1}{2},1]$.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、二次函數(shù)的單調(diào)性、不等式的解法,考查了分類討論方法、推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若m∥α,n∥α,則m∥n | B. | 若m∥α,n∥β,則a∥β | ||
C. | 若a丄γ,β丄γ,則a∥β | D. | 若m丄α,n丄α,則m∥n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | -8 | C. | ±8 | D. | ±64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\root{n}{{a}^{n}}$=a | B. | $\root{6}{{y}^{2}}$=y${\;}^{\frac{1}{3}}$ | C. | a${\;}^{-\frac{3}{5}}$=$\frac{1}{\root{5}{{a}^{3}}}$ | D. | x${\;}^{-\frac{1}{3}}$=-$\root{3}{x}$(x≠0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com