已知⊙O1和⊙O2的極坐標(biāo)方程分別是=2cos="2a" sin是非零常數(shù)).
(1)將兩圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若兩圓的圓心距為,求a的值.

(1);(2).

解析試題分析:(1)由
所以⊙O1的直角坐標(biāo)方程為

所以⊙O2的直角坐標(biāo)方程為       6分
(2)⊙O1與⊙O2的圓心距為,解得.          10分
考點(diǎn):本題主要考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,直線(xiàn)與圓的位置關(guān)系。
點(diǎn)評(píng):中檔題,學(xué)習(xí)參數(shù)方程、極坐標(biāo),其中一項(xiàng)基本的要求是幾種不同形式方程的互化,其次是應(yīng)用極坐標(biāo)、參數(shù)方程,簡(jiǎn)化解題過(guò)程。參數(shù)方程的應(yīng)用,往往可以把曲線(xiàn)問(wèn)題轉(zhuǎn)化成三角問(wèn)題。直線(xiàn)與圓的位置關(guān)系中,涉及弦心距、半徑、弦長(zhǎng)的一半的“特征直角三角形”的題目較多。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn),過(guò)點(diǎn)的直線(xiàn)的參數(shù)方程為:,(t為參數(shù)),直線(xiàn)與曲線(xiàn)分別交于兩點(diǎn).
(1)寫(xiě)出曲線(xiàn)和直線(xiàn)的普通方程;
(2)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

坐標(biāo)系與參數(shù)方程.
在直角坐標(biāo)系xoy中,直線(xiàn)的參數(shù)方程為(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線(xiàn)交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn),過(guò)點(diǎn)的直線(xiàn)的參數(shù)方程為,設(shè)直線(xiàn)與曲線(xiàn)分別交于;
(1)寫(xiě)出曲線(xiàn)和直線(xiàn)的普通方程;
(2)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為,射線(xiàn)的方程為,又的交點(diǎn)為的除極點(diǎn)外的另一個(gè)交點(diǎn)為,當(dāng)時(shí),
(1)求的普通方程,的直角坐標(biāo)方程;
(2)設(shè)軸正半軸的交點(diǎn)為,當(dāng)時(shí),求直線(xiàn)的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在極坐標(biāo)系中,圓ρ=2cosθ與直線(xiàn)3ρcosθ+4ρsinθ+a=0相切,求實(shí)數(shù)a的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線(xiàn)I的參數(shù)方程為(t為參數(shù),O < a <),曲線(xiàn)C的極坐標(biāo)方程為
(I)求曲線(xiàn)C的直角坐標(biāo)方程;
(II)設(shè)直線(xiàn)l與曲線(xiàn)C相交于A ,B兩點(diǎn),當(dāng)a變化時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分10分)選修4-4:坐標(biāo)系與參數(shù)方程選講.
在極坐標(biāo)系中, O為極點(diǎn), 半徑為2的圓C的圓心的極坐標(biāo)為.
⑴求圓C的極坐標(biāo)方程;
是圓上一動(dòng)點(diǎn),點(diǎn)滿(mǎn)足,以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸建立直角坐標(biāo)系,求點(diǎn)Q的軌跡的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)圓和圓的極坐標(biāo)方程分別為
(1)把圓和圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過(guò)圓,圓兩個(gè)交點(diǎn)的直線(xiàn)的直角坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案