17.已知函數(shù)f(x)=x2-|x|+a-1有四個零點,則a的取值范圍是$(\;1\;,\;\frac{5}{4}\;)$.

分析 將方程的零點問題轉化成函數(shù)的交點問題,作出函數(shù)的圖象得到a的范圍.

解答 解:由f(x)=x2-|x|+a-1=0,
得a-1=-x2+|x|,
作出y=-x2+|x|與y=a-1的圖象,

要使函數(shù)f(x)=x2-|x|+a-1有四個零點,
則y=-x2+|x|與y=a-1的圖象有四個不同的交點,
所以0<a-1<$\frac{1}{4}$,
解得:a∈$(\;1\;,\;\frac{5}{4}\;)$
故答案為:$(\;1\;,\;\frac{5}{4}\;)$

點評 本題考查等價轉化的能力、利用數(shù)形結合解題的數(shù)學思想方法是重點,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0,且直線與圓C交于A,B兩點,若點P(1,1)滿足2$\overrightarrow{AP}$=$\overrightarrow{PB}$,則直線l的方程為x-y=0或x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.“莫以宜春遠,江山多勝游”,近年來,宜春市在旅游業(yè)方面抓品牌創(chuàng)建,推進養(yǎng)生休閑度假旅游產(chǎn)品升級,明月山景區(qū)成功創(chuàng)建國家5A級旅游景區(qū)填補了贛西片區(qū)的空白,某投資人看到宜春旅游發(fā)展的大好前景后,打算在宜春投資甲,乙兩個旅游項目,根據(jù)市場前期調查,甲,乙兩個旅游項目五年后可能的最大盈利率分別為100%和80%,可能的最大虧損率分別為40%和20%,投資人計劃投資金額不超過5000萬,要求確保虧損不超過1200萬,問投資人對兩個項目各投資多少萬元,才能使五年后可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可參加抽獎,抽獎有兩種方案可供選擇.
方案一:從裝有4個紅球和2個白球的不透明箱中,隨機摸出2個球,若摸出的2個球都是紅球則中獎,否則不中獎;
方案二:擲2顆骰子,如果出現(xiàn)的點數(shù)至少有一個為4則中獎,否則不中獎.(注:骰子(或球)的大小、形狀、質地均相同)
(Ⅰ)有顧客認為,在方案一種,箱子中的紅球個數(shù)比白球個數(shù)多,所以中獎的概率大于$\frac{1}{2}$.你認為正確嗎?請說明理由;
(Ⅱ)如果是你參加抽獎,你會選擇哪種方案?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.有一個幾何體的三視圖如圖所示,這個幾何體應是一個( 。
A.棱臺B.棱錐C.棱柱D.正四面體

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知焦點在x 軸上的雙曲線的漸近線方程為$y=±\frac{1}{2}x$,則雙曲線的離心率為( 。
A.$\frac{5}{4}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.珠海市板樟山森林公園(又稱澳門回歸公園)的山頂平臺上,有一座百子回歸碑.百子回歸碑是一座百年澳門簡史,記載著近年來澳門的重大歷史事件以及有關史地,人文資料等,如中央四數(shù)連讀為1999-12-20標示澳門回歸日,中央靠下有23-50標示澳門面積約為23.50 平方公里.百子回歸碑實為一個十階幻方,是由1 到100 共100 個整數(shù)填滿100個空格,其橫行數(shù)字之和與直列數(shù)字之和以及對角線數(shù)字之和都相等.請問如圖2 中對角線上數(shù)字(從左上到右下)之和為505.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合M={x|x>2},$a=\sqrt{5}$,則下列關系式正確的是( 。
A.a⊆MB.a∉MC.{a}∉MD.{a}⊆M

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,矩形ABCD是一個歷史文物展覽廳的俯視圖,點E在AB上,在梯形BCDE區(qū)域內部展示文物,DE是玻璃幕墻,游客只能在△ADE區(qū)域內參觀,在AE上點P處安裝一可旋轉的監(jiān)控攝像頭,∠MPN為監(jiān)控角,其中M、N在線段DE(含端點)上,且點M在點N的右下方,經(jīng)測量得知:AD=6米,AE=6米,AP=2米,∠MPN=$\frac{π}{4}$,記∠EPM=θ(弧度),監(jiān)控攝像頭的可視區(qū)域△PMN的面積為S平方米.
(1)求S關于θ的函數(shù)關系式,并寫出θ的取值范圍:(參考數(shù)據(jù):tan$\frac{5}{4}$≈3)
2)求S的最小值.

查看答案和解析>>

同步練習冊答案