分析 (1)對函數(shù)進行求導,然后令導函數(shù)大于0求出x的范圍,令導函數(shù)小于0求出x的范圍,即可得到答案;
(2)問題轉(zhuǎn)化為b≤a+$\frac{1-lnx}{x}$在[1,e3]恒成立,依據(jù)不等式恒成立時所取的條件,求出實數(shù)b的取值范圍即可.
解答 解:(1)函數(shù)f(x)的定義域為(0,+∞)
.f′(x)=a-$\frac{1}{x}$=$\frac{ax-1}{x}$,
若a≤0,則f'(x)<0,
∴f(x)在(0,+∞)上遞減;
若a>0,則由f'(x)>0得:x>$\frac{1}{a}$;
由f'(x)<0得:0<x<$\frac{1}{a}$
∴f(x)在(0,$\frac{1}{a}$)上遞減,在($\frac{1}{a}$,+∞)遞增.
(2)由f(x)≥bx-2得:b≤a+$\frac{1-lnx}{x}$,
令g(x)=a+$\frac{1-lnx}{x}$,
則g′(x)=$\frac{lnx-2}{{x}^{2}}$由g'(x)>0得:x>e2;
由g'(x)<0得:0<x<e2.
所以,g(x)在[1,e2)上遞減,在(e2,e3]遞增.
∴g(x)max=g(e3)=a-$\frac{2}{{e}^{3}}$,
∴b≤a-$\frac{2}{{e}^{3}}$,∵a∈[1,4),
∴b≤1-$\frac{2}{{e}^{3}}$.
點評 本題主要考查導函數(shù)的正負與原函數(shù)的單調(diào)性之間的關系,即當導函數(shù)大于0時原函數(shù)單調(diào)遞增,當導函數(shù)小于0時原函數(shù)單調(diào)遞減,會利用導數(shù)研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值.掌握不等式恒成立時所取的條件.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ca>cb | B. | ac<bc | C. | $\frac{a}{a-c}>\frac{b-c}$ | D. | logac>logbc |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
常喝 | 不常喝 | 合計 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
合計 | 30 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,$\frac{1}{4}$] | B. | [$\frac{1}{4}$,1] | C. | [-2,$\frac{1}{4}$] | D. | [$\frac{1}{3}$,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-2,-1]∪(1,2) | B. | (-2,-1]∪(1,2] | C. | [-2,-1]∪[1,2] | D. | (-2,-1]∪(1,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{17}{16}$ | B. | $\frac{9}{8}$ | C. | $\frac{5}{4}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | ±1 | C. | $\sqrt{2}$ | D. | ±$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com