分析 根據(jù)題意,用sinα代替sinβ代入y中,利用三角恒等變換求出y的最大、最小值.
解答 解:∵$sinα+sinβ=\frac{1}{3}$,
∴$sinβ=\frac{1}{3}-sinα$,
∴$y=sinβ-{cos^2}α=\frac{1}{3}-sinα-{cos^2}α=\frac{1}{3}-sinα-({1-{{sin}^2}α})$
=${sin^2}α-sinα-\frac{2}{3}={({sinα-\frac{1}{2}})^2}-\frac{11}{12}$,
∵-1≤sinβ≤1,∴$-1≤\frac{1}{3}-sinα≤1$,
解得$-\frac{2}{3}≤sinα≤1$,
∴當$sinα=-\frac{2}{3}$時,${y_{max}}=\frac{4}{9}$,
當$sinα=\frac{1}{2}$時,${y_{min}}=-\frac{11}{12}$.
點評 本題考查了三角恒等變換與三角函數(shù)的圖象、性質(zhì)應用問題,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y2-x2=1(y<0) | B. | (y+2)2+x2=1 | C. | ${x^2}+\frac{y^2}{4}=1(y<0)$ | D. | x2=-y-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x≤0} | B. | {x|x≤1} | C. | {x|x≥2} | D. | {x|x≤1或x≥2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “若a>1,則a2>1”的否命題是“若a>1,則a2≤1” | |
B. | 在△ABC中,“A>B”是“sinA>sinB”必要不充分條件 | |
C. | “若tanα≠$\sqrt{3}$,則α≠$\frac{π}{3}$”是真命題 | |
D. | ?x0∈(-∞,0)使得3x0<4x0成立 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 與m有關(guān) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{2\sqrt{2}}}{3}$ | B. | -$\frac{1}{2}$ | C. | 0 | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com