設(shè),兩個(gè)函數(shù),的圖像關(guān)于直線(xiàn)對(duì)稱(chēng).
(1)求實(shí)數(shù)滿(mǎn)足的關(guān)系式;
(2)當(dāng)取何值時(shí),函數(shù)有且只有一個(gè)零點(diǎn);
(3)當(dāng)時(shí),在上解不等式

(1);(2);(3)

解析試題分析:(1)兩個(gè)函數(shù)的圖象關(guān)于某條直線(xiàn)對(duì)稱(chēng),一般都是設(shè)是一個(gè)函數(shù)圖象上的任一點(diǎn),求出這個(gè)點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng)的點(diǎn),而點(diǎn)就在第二個(gè)函數(shù)的圖象上,這樣就把兩個(gè)函數(shù)建立了聯(lián)系;(2)函數(shù)有且只有一個(gè)零點(diǎn),一般是求,通過(guò)討論函數(shù)的單調(diào)性,最值,從而討論零點(diǎn)的個(gè)數(shù),當(dāng)然本題中由于的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),因此的唯一零點(diǎn)也就是它們的的唯一交點(diǎn)必在直線(xiàn)上,這個(gè)交點(diǎn)是函數(shù)圖象與直線(xiàn)的切點(diǎn),這樣我們可從切線(xiàn)方面來(lái)解決問(wèn)題;(3)考慮,
當(dāng)然要解不等式,還需求,討論的單調(diào)性,極值,從而確定不等式的解集.
試題解析:(1)設(shè)是函數(shù)圖像上任一點(diǎn),則它關(guān)于直線(xiàn)對(duì)稱(chēng)的點(diǎn)在函數(shù)的圖像上,.
(2)當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn),兩個(gè)函數(shù)的圖像有且只有一個(gè)交點(diǎn),兩個(gè)函數(shù)關(guān)于直線(xiàn)對(duì)稱(chēng),兩個(gè)函數(shù)圖像的交點(diǎn)就是函數(shù),的圖像與直線(xiàn)的切點(diǎn).
設(shè)切點(diǎn)為,,,,,
當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn);
(3)當(dāng)時(shí),設(shè) ,則
,當(dāng)時(shí),,,
當(dāng)時(shí),
上是減函數(shù).
=0,不等式解集是
考點(diǎn):(1)兩個(gè)函數(shù)圖象的對(duì)稱(chēng)問(wèn)題;(2)函數(shù)的零點(diǎn)與切線(xiàn)問(wèn)題;(3)解函數(shù)不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求的定義域;
(2)當(dāng)為何值時(shí),函數(shù)值大于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖象過(guò)點(diǎn)(2,0).
⑴求m的值;
⑵證明的奇偶性;
⑶判斷上的單調(diào)性,并給予證明;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

給出函數(shù)
求函數(shù)的定義域;
判斷函數(shù)的奇偶性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

是定義在上的函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)利用函數(shù)單調(diào)性的定義證明:是其定義域上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),指出的單調(diào)遞減區(qū)間和奇偶性(不需說(shuō)明理由);
(2)當(dāng)時(shí),求函數(shù)的零點(diǎn);
(3)若對(duì)任何不等式恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,函數(shù),,記
(Ⅰ)求函數(shù)的定義域及其零點(diǎn);
(Ⅱ)若關(guān)于的方程在區(qū)間內(nèi)僅有一解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

湖南省環(huán)保研究所對(duì)長(zhǎng)沙市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時(shí)刻x的關(guān)系為,其中a是與氣象有關(guān)的參數(shù),且,若用每天的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作.
(Ⅰ)令,求t的取值范圍;
(Ⅱ)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過(guò)2,試問(wèn)目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖象分別與軸、軸交于兩點(diǎn),且,函數(shù),當(dāng)滿(mǎn)足不等式,時(shí),求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案