分析 由題意根據(jù)相互獨立事件的概率乘法公式、以及互斥事件的概率加法公式,求得P(X=2)的值.
解答 解:該畢業(yè)生得到甲公司面試的概率為$\frac{2}{3}$,
得到乙、丙兩公司面試的概率均為p,且三個公司是否讓其面試是相互獨立的.
記X為該畢業(yè)生得到面試的公司個數(shù).
由題意可得P(X=0)=(1-$\frac{2}{3}$)•(1-p)2=$\frac{1}{12}$,
∴p=$\frac{1}{2}$.
∴P(X=2)=$\frac{2}{3}•\frac{1}{2}•(1-\frac{1}{2})$+$\frac{2}{3}•(1-\frac{1}{2})•\frac{1}{2}$+(1-$\frac{2}{3}$)•${(\frac{1}{2})}^{2}$=$\frac{5}{12}$,
故答案為:$\frac{5}{12}$.
點評 本題主要考查相互獨立事件的概率乘法公式、以及互斥事件的概率加法公式的應用,所求的事件的概率與它的對立事件的概率之間的關(guān)系,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{7}{10}$ | D. | $\frac{9}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總 計 | |
學習雷鋒精神前 | 50 | 150 | 200 |
學習雷鋒精神后 | 30 | 170 | 200 |
總 計 | 80 | 320 | 400 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com