4.甲、乙兩樓相距20m,從乙樓底望甲樓頂?shù)难鼋菫?0°,從甲樓頂望乙樓頂?shù)母┙菫?0°,則甲樓高和乙樓高的比為3:2.

分析 由題意畫出圖形,過點(diǎn)C作CM⊥AB于點(diǎn)M,根據(jù)題意得:CM=BD=20米,∠ACM=30°,∠ADB=60°,然后在Rt△ACM與Rt△ADB中,用正切函數(shù)計(jì)算求得兩樓的高度,即可得出結(jié)論.

解答 解:如圖過點(diǎn)C作CM⊥AB于點(diǎn)M,根據(jù)題意得:CM=BD=20米,
∠ACM=30°,∠ADB=60°,
在Rt△ACM中,tan30°=$\frac{AM}{CM}$=$\frac{\sqrt{3}}{3}$
∴AM=$\frac{\sqrt{3}}{3}$CM=20×$\frac{\sqrt{3}}{3}$=$\frac{20\sqrt{3}}{3}$(米),
在Rt△ADB中,tan60°=$\frac{AB}{BD}$
∴AB=DB•tan60°=20$\sqrt{3}$(米),
CD=AB-AM=20$\sqrt{3}$-$\frac{20\sqrt{3}}{3}$=$\frac{40\sqrt{3}}{3}$(米)
所以甲樓高和乙樓高的比為3:2,
故答案為3:2.

點(diǎn)評(píng) 本題考查了應(yīng)用正弦定理、余弦定理解三角形應(yīng)用題問題;一般是根據(jù)題意,從實(shí)際問題中抽象出一個(gè)或幾個(gè)三角形,通過解這些三角形,從而使實(shí)際問題得到解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將圓的六個(gè)等分點(diǎn)分成相同的兩組,它們每組三個(gè)點(diǎn)構(gòu)成的兩個(gè)正三角形除去內(nèi)部的六條線段后可以形成一個(gè)正六角星.如圖所示的正六角星的中心為點(diǎn)O,其中x,y分別為點(diǎn)O到兩個(gè)頂點(diǎn)的向量.若將點(diǎn)O到正六角星12個(gè)頂點(diǎn)的向量都寫成ax+by的形式,則a+b的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{3}$,過左焦點(diǎn)任作直線l,交橢圓的上半部分于點(diǎn)M,當(dāng)l的斜率為$\frac{{\sqrt{3}}}{3}$時(shí),|FM|=$\frac{{4\sqrt{3}}}{3}$.
(1)求橢圓C的方程;
(2)橢圓C上兩點(diǎn)A,B關(guān)于直線l對(duì)稱,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.集合A={x|x>0},B={-2,-1,1,2},則(∁RA)∩B=( 。
A.(0,+∞)B.{-2,-1,1,2}C.{-2,-1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q>0,S2=2a2-2,S3=a4-2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\left\{\begin{array}{l}{\frac{lo{g}_{2}{a}_{n}}{{n}^{2}(n+2)},n為奇數(shù)}\\{\frac{n}{{a}_{n}},n為偶數(shù)}\end{array}\right.$,Tn為{bn}的前n項(xiàng)和,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合M={y|y=x2},用自然語言描述M應(yīng)為(  )
A.函數(shù)y=x2的函數(shù)值組成的集合B.函數(shù)y=x2的自變量的值組成的集合
C.函數(shù)y=x2的圖象上的點(diǎn)組成的集合D.以上說法都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在平行四邊形ABCD中,∠BAD=60°,E是CD上一點(diǎn),且$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BC}$,|$\overrightarrow{AB}$|=λ|$\overrightarrow{AD}$|.若$\overrightarrow{AC}$•$\overrightarrow{EB}$=$\frac{1}{2}$$\overrightarrow{AD}$2,則λ等于( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.從某地區(qū)一次中學(xué)生知識(shí)競賽中,隨機(jī)抽取了30名學(xué)生的成績,繪成如圖所示的2×2列聯(lián)表:
優(yōu)秀一般合計(jì)
男生76
女生512
合計(jì)
(1)試問有沒有90%的把握認(rèn)為優(yōu)秀一般與性別有關(guān);
(2)用樣本估計(jì)總體,把頻率作為概率,若從該地區(qū)所有的中學(xué)(人數(shù)很多)中隨機(jī)抽取3人,用ξ表示所選3人中優(yōu)秀的人數(shù),試寫出ξ的分布列,并求出ξ的數(shù)學(xué)期望,.${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d
獨(dú)立性檢驗(yàn)臨界表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=1+$\frac{{{2^{x+1}}}}{{{2^x}+1}}$+sinx在區(qū)間[-k,k](k>0)上的值域?yàn)閇m,n],則m+n等于( 。
A.0B.1C.2D.4

查看答案和解析>>

同步練習(xí)冊答案