分析 根據(jù)正切函數(shù)的性質(zhì),列出不等式即可求出f(x)的單調(diào)區(qū)間.
解答 解:函數(shù)y=tan(2x-$\frac{π}{3}$),
令-$\frac{π}{2}$+kπ<2x-$\frac{π}{3}$<$\frac{π}{2}$+kπ,k∈Z,
解得-$\frac{π}{12}$+$\frac{kπ}{2}$<x<$\frac{5π}{12}$+$\frac{kπ}{2}$,k∈Z;
所以函數(shù)f(x)的單調(diào)增區(qū)間為(-$\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{5π}{12}$+$\frac{kπ}{2}$),(k∈Z).
故答案為:(-$\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{5π}{12}$+$\frac{kπ}{2}$),(k∈Z).
點評 本題考查了正切函數(shù)的性質(zhì)與應用問題,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{\sqrt{2}}{2}$ | C. | 2或$\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{2}$或$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ab≤1 | B. | a2+b2≥2 | C. | $\sqrt{a}$+$\sqrt$≤$\sqrt{2}$ | D. | $\frac{1}{a}$+$\frac{1}$≥2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x1>x2>x3 | B. | x2>x1>x3 | C. | x3>x2>x1 | D. | x3>x1>x2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com