分析 (1)以D為原點,建立空間直線坐標系,利用向量法能證明DE⊥C1F.
(2)求出$\overrightarrow{{A}_{1}C}$=(-a,a,-a),$\overrightarrow{{C}_{1}F}$=(a,-$\frac{a}{2}$,0),利用向量法能求出異面直線A1C與C1F所成角的余弦值.
解答 證明:(1)以D為原點,建立空間直線坐標系
∵棱長為a的正方體ABCD-A1B1C1D1中,
E是BC的中點,F(xiàn)為A1B1的中點.
∴D(0,0,0),E($\frac{a}{2}$,a,0),
C1(0,a,a),F(xiàn)(a,$\frac{a}{2}$,a),
$\overrightarrow{DE}$=($\frac{a}{2},a,0$),
$\overrightarrow{{C}_{1}F}$=(a,-$\frac{a}{2}$,0),
∴$\overrightarrow{DE}•\overrightarrow{{C}_{1}F}$=$\frac{{a}^{2}}{2}-\frac{{a}^{2}}{2}+0=0$,
∴DE⊥C1F.
解:(2)A1(a,0,a),
C(0,a,0),C1(0,a,a),
F(a,$\frac{a}{2}$,a),
$\overrightarrow{{A}_{1}C}$=(-a,a,-a),
$\overrightarrow{{C}_{1}F}$=(a,-$\frac{a}{2}$,0),
設異面直線A1C與C1F所成角為θ,
則cosθ=$\frac{|\overrightarrow{{A}_{1}C}•\overrightarrow{{C}_{1}F}|}{|\overrightarrow{{A}_{1}C}|•|\overrightarrow{{C}_{1}F}|}$=$\frac{\frac{3}{2}{a}^{2}}{\sqrt{3}a•\sqrt{\frac{5}{4}}a}$=$\frac{\sqrt{15}}{5}$.
∴異面直線A1C與C1F所成角的余弦值為$\frac{\sqrt{15}}{5}$.
點評 本題考查線線垂直的證明,考查異面直線所成角和余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有相等的焦距,相同的焦點 | B. | 有不同的焦距,不同的焦點 | ||
C. | 有相等的焦距,不同的焦點 | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{10}}}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{{\sqrt{10}}}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{3}^{2015}}{2}$+$\frac{3}{2}$ | B. | $\frac{{3}^{2015}}{8}$ | C. | $\frac{{3}^{2015}}{8}$+$\frac{3}{2}$ | D. | $\frac{{3}^{2015}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com