18.已知函數(shù)f(x)=lnx-a$\frac{x-1}{x+1}$,a∈R.
(Ⅰ)討論f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x≠1時(shí),$\frac{{({x+1})lnx+2a}}{{{{({x+1})}^2}}}<\frac{lnx}{x-1}$恒成立,求a的取值范圍.

分析 (Ⅰ)定義域是(0,+∞),$f'(x)=\frac{1}{x}-\frac{2a}{{{{(x+1)}^2}}}=\frac{{{x^2}+2(1-a)x+1}}{{x{{(x+1)}^2}}}$.令g(x)=x2+2(1-a)x+1.對△=4(1-a)2-4與0的大小,分類討論,即可得出單調(diào)性.
(Ⅱ)由$\frac{{({x+1})lnx+2a}}{{{{({x+1})}^2}}}<\frac{lnx}{x-1}$,得$\frac{{({x+1})lnx+2a}}{{{{({x+1})}^2}}}-\frac{lnx}{x-1}<0$,即$\frac{-2lnx}{{{x^2}-1}}+\frac{{2a({x-1})}}{{{{({x+1})}^2}({x-1})}}<0$,即$\frac{2}{{1-{x^2}}}({lnx-a\frac{x-1}{x+1}})<0$,即$\frac{2}{{1-{x^2}}}f(x)<0$.對a分類討論,利用(I)的f(x)的單調(diào)性,即可得出.

解答 解:(Ⅰ)定義域是(0,+∞),$f'(x)=\frac{1}{x}-\frac{2a}{{{{(x+1)}^2}}}=\frac{{{x^2}+2(1-a)x+1}}{{x{{(x+1)}^2}}}$.(1分)
令g(x)=x2+2(1-a)x+1.
①當(dāng)△=4(1-a)2-4≤0,即0≤a≤2時(shí),g(x)≥0恒成立,即f'(x)≥0,
所以f(x)的單調(diào)增區(qū)間為(0,+∞);                                             (2分)
②當(dāng)△=4(1-a)2-4>0時(shí),即a<0或a>2時(shí),方程g(x)=0有兩個(gè)不等的實(shí)根,${x_1}=a-1-\sqrt{{{(a-1)}^2}-1},{x_2}=a-1+\sqrt{{{(a-1)}^2}-1}$.
若a<0,由x1+x2=2(a-1)<0,x1x2=1>0得,x1<0,x2<0,
所以g(x)>0在(0,+∞)成立,即f'(x)>0,所以f(x)的單調(diào)增區(qū)間為(0,+∞);            (3分)
若a>2,由x1+x2=2(a-1)>0,x1x2=1>0得,x1>0,x2>0,
由g(x)>0得x的范圍是(0,x1),(x2,+∞),由g(x)<0得x的范圍(x1,x2),
即f(x)的單調(diào)遞增區(qū)間為(0,x1),(x2,+∞),f(x)的單調(diào)遞減區(qū)間為(x1,x2).(4分)
綜上所述,當(dāng)a>2時(shí),f(x)的單調(diào)遞增區(qū)間為$({0,a-1-\sqrt{{{(a-1)}^2}-1}}),({a-1+\sqrt{{{(a-1)}^2}-1},+∞})$,f(x)的單調(diào)遞減區(qū)間為$({a-1-\sqrt{{{(a-1)}^2}-1},a-1+\sqrt{{{(a-1)}^2}-1}})$;
當(dāng)a≤2時(shí),f(x)的單調(diào)遞增區(qū)間為(0,+∞),無遞減區(qū)間.(5分)
(Ⅱ)由$\frac{{({x+1})lnx+2a}}{{{{({x+1})}^2}}}<\frac{lnx}{x-1}$,得$\frac{{({x+1})lnx+2a}}{{{{({x+1})}^2}}}-\frac{lnx}{x-1}<0$,
即$\frac{-2lnx}{{{x^2}-1}}+\frac{{2a({x-1})}}{{{{({x+1})}^2}({x-1})}}<0$,即$\frac{2}{{1-{x^2}}}({lnx-a\frac{x-1}{x+1}})<0$,即$\frac{2}{{1-{x^2}}}f(x)<0$.(7分)
①由(Ⅰ)可知當(dāng)a≤2時(shí),f(x)的單調(diào)遞增區(qū)間為(0,+∞),又f(1)=0,(8分)
所以當(dāng)x∈(0,1)時(shí),f(x)<0,當(dāng)x∈(1,+∞)時(shí),f(x)>0;
又當(dāng)x∈(0,1)時(shí),$\frac{2}{{1-{x^2}}}>0$,當(dāng)x∈(1,+∞)時(shí),$\frac{2}{{1-{x^2}}}<0$;
所以$\frac{2}{{1-{x^2}}}f(x)<0$,即原不等式成立.(9分)
②由(Ⅰ)可知當(dāng)a>2時(shí),f(x)在(0,x1),(x2,+∞)單調(diào)遞增,在(x1,x2)單調(diào)遞減,
且x1x2=1,得x1<1<x2,f(x2)<f(1)=0,(10分)
而$\frac{2}{1-x_2^2}<0$,所以$\frac{2}{1-x_2^2}f({x_2})>0$與條件矛盾.(11分)
綜上所述,a的取值范圍是(-∞,2].(12分)

點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、方程與不等式的解法、分類討論方法,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知sinα=$\frac{4}{5}$,$\frac{π}{2}$<α<π,則sin2α=-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.據(jù)統(tǒng)計(jì),目前微信用戶已達(dá)10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進(jìn)入微商渠道,讓這個(gè)行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國微商博覽會在山東濟(jì)南舜耕國際會展中心召開,力爭為中國微商產(chǎn)業(yè)轉(zhuǎn)型升級.某品牌飲料公司對微商銷售情況進(jìn)行中期調(diào)研,從某地區(qū)隨機(jī)抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).
(Ⅰ)若銷售金額(單位:萬元)不低于平均值$\overline x$的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據(jù)莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?
(Ⅱ)從隨機(jī)抽取的6家微商中再任取2家舉行消費(fèi)者回訪調(diào)查活動,求恰有1家是優(yōu)秀微商的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知奇函數(shù)f(x)=$\left\{\begin{array}{l}{3^x}-a,({x≥0})\\ g(x),({x<0})\end{array}$,則f(-2)的值為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.定義運(yùn)算“?”:a?b=a+b-$\sqrt{ab}$(a,b為正實(shí)數(shù)).若4?k=3,則函數(shù)f(x)=$\frac{k?x}{{\sqrt{x}}}$的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知點(diǎn)P(x,y)滿足$|x|-1≤y≤\sqrt{1-{{|x|}^2}},O$為坐標(biāo)原點(diǎn),則使$|{PO}|≥\frac{{\sqrt{2}}}{2}$的概率為( 。
A.$\frac{π}{π+2}$B.$\frac{π}{π+4}$C.$\frac{2}{π+1}$D.$\frac{2}{π+2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知等差數(shù)列{an}的前10項(xiàng)和為165,a4=12,則a7=(  )
A.14B.18C.21D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x-b|的最小值為1.
(1)證明:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知拋物線y2=2px的焦點(diǎn)為F,△ABC的三個(gè)頂點(diǎn)都在拋物線上,且A(1,2),$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{AF}$,則BC邊所在的直線方程為( 。
A.2x-y-2=0B.2x-y-1=0C.2x+y-6=0D.2x+y-3=0

查看答案和解析>>

同步練習(xí)冊答案