19.一圓錐的母線長2cm,底面半徑為1cm,則該圓錐的表面積是3πcm2

分析 圓錐的側面積=底面周長×母線長÷2,把相應數(shù)值代入即可求解.

解答 解:圓錐的側面積=2π×1×2÷2=2π.底面積為π
該圓錐的表面積是為:2π+π=3π.
故答案為:3π

點評 本題考查了圓錐的計算,解題的關鍵是弄清圓錐的側面積的計算方法,特別是圓錐的底面周長等于圓錐的側面扇形的弧長,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.雙曲線9y2-25x2=169的漸近線方程是(  )
A.y=$\frac{5}{3}$xB.y=$\frac{3}{5}$xC.y=±$\frac{5}{3}$xD.y=±$\frac{3}{5}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,四棱錐P-ABCD中,底面ABCD是矩形,平面PAD⊥底面ABCD,且△PAD是邊長為2的等邊三角形,PC=$\sqrt{13}$,M在PC上,且PA∥面MBD.
(1)求證:M是PC的中點;
(2)求多面體PABMD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=x2-2ax+4(a-1)ln(x+1),其中實數(shù)a<3.
(Ⅰ)判斷x=1是否為函數(shù)f(x)的極值點,并說明理由;
(Ⅱ)若f(x)≤0在區(qū)間[0,1]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知拋物線關于x軸對稱,它的頂點在坐標原點O,焦點為F,并且經(jīng)過點M(2,y0).若點M到該拋物線焦點的距離為3,則△MOF的面積為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在底面為直角梯形的四棱錐S-ABCD中,且AD∥BC,AD=DC=1,$SA=SC=SD=\sqrt{2}$.
(Ⅰ)求證:AC⊥SD;
(Ⅱ)求三棱錐B-SAD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知tan(α-β)=$\frac{2}{3}$,tan($\frac{π}{6}$-β)=$\frac{1}{2}$,則tan(α-$\frac{π}{6}$)等于( 。
A.$\frac{1}{4}$B.$\frac{7}{8}$C.$\frac{1}{8}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知a>0,b>0,當(a+4b)2+$\frac{1}{ab}$取到最小值時,b=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.橢圓$\frac{{x}^{2}}{3}$+y2=1兩焦點之間的距離為2$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案