【題目】如圖過拋物線的焦點(diǎn)的直線依次交拋物線及準(zhǔn)線于點(diǎn),若,且,則

A.2B.C.3D.6

【答案】B

【解析】

分別過點(diǎn)A,B作準(zhǔn)線的垂線,分別交準(zhǔn)線于點(diǎn)E,D,設(shè)|BF|a,根據(jù)拋物線定義可知|BD|a,進(jìn)而推斷出∠BCD的值,在直角三角形中求得a,進(jìn)而根據(jù)BDFG,利用比例線段的性質(zhì)可求得p

如圖,分別過點(diǎn)A,B作準(zhǔn)線的垂線,分別交準(zhǔn)線于點(diǎn)E,D,設(shè)|BF|a,則由得:|BC|2a,

由拋物線定義得:|BD||BF|=a,在直角三角形中,∠BCD30°,

在直角三角形AEC中,∵|AF|3,由拋物線定義得:|AE|3,∴|AC|3+3a,∴2|AE||AC|

3+3a6,從而得a1,∵BDFG,∴ p.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒有發(fā)生大規(guī)模群體感染的標(biāo)志是連續(xù)10日,每天新增疑似病例不超過7”.已知過去10日,、、三地新增疑似病例數(shù)據(jù)信息如下:

地:總體平均數(shù)為3,中位數(shù)為4;

地:總體平均數(shù)為2,總體方差為3

地:總體平均數(shù)為1,總體方差大于0

、、三地中,一定沒有發(fā)生大規(guī)模群體感染的是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長度單位.已知圓和圓的極坐標(biāo)方程分別是.

1)求圓和圓的公共弦所在直線的直角坐標(biāo)方程;

2)若射線與圓的交點(diǎn)為O、P,與圓的交點(diǎn)為O、Q,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直三棱柱中,,,,點(diǎn)在線段.

1)若,求異面直線所成角的余弦值;

2)若直線與平面所成角為,試確定點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面,.

1)求證:平面;

2)求異面直線所成角的大;

3)點(diǎn)在線段上,且,點(diǎn)在線段上,若平面,求的值(用含的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

2)若直線l與曲線C相交于AB兩點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某飲料廠生產(chǎn)兩種飲料.生產(chǎn)1飲料,需該特產(chǎn)原料100公斤,需時(shí)間3小時(shí);生產(chǎn)1 飲料需該特產(chǎn)原料100公斤,需時(shí)間1小時(shí),每天飲料的產(chǎn)量不超過飲料產(chǎn)量的2倍,每天生產(chǎn)兩種飲料所需該特產(chǎn)原料的總量至多750公斤,每天生產(chǎn)飲料的時(shí)間不低于生產(chǎn)飲料的時(shí)間,每桶飲料的利潤是每桶飲料利潤的1.5倍,若該飲料廠每天生產(chǎn)飲料桶,飲料桶時(shí)()利潤最大,則_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱錐的底面邊長為高為其內(nèi)切球與面切于點(diǎn),球面上與距離最近的點(diǎn)記為,若平面過點(diǎn),且與平行,則平面截該正四棱錐所得截面的面積為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,函數(shù)

1)求函數(shù)的最小正周期與圖象的對稱軸方程;

2)若,,函數(shù)的最小值是,最大值是2,求實(shí)數(shù),的值.

查看答案和解析>>

同步練習(xí)冊答案