3.如圖所示,在正方體ABCD-A1B1C1D1中,下列結(jié)論正確的是( 。
A.直線A1B與直線AC所成的角是45°
B.直線A1B與平面ABCD所成的角是30°
C.二面角A1-BC-A的大小是60°
D.直線A1B與平面A1B1CD所成的角是30°

分析 對(duì)4個(gè)選項(xiàng)分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:對(duì)于A,連結(jié)BC1、A1C1,
∵在正方體ABCD-A1B1C1D1中,A1A平行且等于C1C,
∴四邊形AA1C1C為平行四邊形,可得A1C1∥AC,
因此∠BA1C1(或其補(bǔ)角)是異面直線A1B與AC所成的角,
設(shè)正方體的棱長為a,則△A1B1C中A1B=BC1=C1A1=$\sqrt{2}$a,
∴△A1B1C是等邊三角形,可得∠BA1C1=60°,
即異面直線A1B與AC所成的角等于60°.即A不正確;
直線A1B與平面ABCD所成的角是∠A1BA=45°,即B不正確;
二面角A1-BC-A的平面角是∠A1BA=45°,即C不正確;
因?yàn)锽C1⊥平面A1B1CD,所以A1O為斜線A1B在平面A1B1CD內(nèi)的射影,所以∠BA1O為A1B與平面A1B1CD所成的角.設(shè)正方體的棱長為a
在RT△A1BO中,A1B=$\sqrt{2}$a,BO=$\frac{\sqrt{2}}{2}$a,所以BO=$\frac{1}{2}$A1B,∠BA1O=30°,
即直線A1B和平面A1B1CD所成的角為30°,即D正確.
故選D.

點(diǎn)評(píng) 本題在正方體中求異面直線所成角和直線與平面所成角的大小,著重考查了正方體的性質(zhì)、空間角的定義及其求法等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線E$:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,其一漸近線被圓C:(x-1)2+(y-3)2=9所截得的弦長等于4,則E的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{5}$C.$\frac{{\sqrt{5}}}{2}$或$\sqrt{3}$D.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合A={1,2,3},B={2,4,6,8},則A∩B=( 。
A.{2}B.{2,3}C.{1,2,3,4,6,8}D.{1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若復(fù)數(shù)z滿足:z+2i=$\frac{3-{i}^{3}}{1+i}$(i為虛數(shù)單位),則|z|等于( 。
A.$\sqrt{13}$B.3C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知i為虛數(shù)單位,那么(1+2i)2等于-3+4i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖為某幾何體的三視圖,則該幾何體的內(nèi)切球的直徑為( 。
A.2B.1C.$\frac{1}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)$f(x)=\sqrt{|{2x+1}|+|{2x-2}|-a}$.
(Ⅰ)當(dāng)a=5時(shí),求函數(shù)f(x)的定義域;
(Ⅱ)若函數(shù)f(x)的定義域?yàn)镽,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列哪種工作不能使用抽樣方法進(jìn)行(  )
A.測(cè)定一批炮彈的射程
B.測(cè)定海洋水域的某種微生物的含量
C.高考結(jié)束后,國家高考命題中心計(jì)算數(shù)學(xué)試卷中每個(gè)題目的難度
D.檢測(cè)某學(xué)校全體高二學(xué)生的身高和體重的情況

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“${(\frac{1}{3})^x}<1$”是“$\frac{1}{x}>1$”的( 。
A.必要且不充分條件B.充分且不必要條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案