14.函數(shù)$f(x)=cos(3x+\frac{5π}{2})$,滿足$\frac{f({x}_{i})}{{x}_{i}}=m$,其中${x}_{i}∈[-2π,2π],i=1,2,…,n,n∈{N}^{*}$,則n的最大值為( 。
A.13B.12C.10D.8

分析 化簡函數(shù)f(x),利用正弦函數(shù)的圖象特征,直線的斜率公式,即可求得n的最大值.

解答 解:函數(shù)$f(x)=cos(3x+\frac{5π}{2})$=-sin3x,
當$\frac{f({x}_{i})}{{x}_{i}}=m$時,可得圖象上的點(xi,f(x1))與原點連線的斜率為定值m,
故當n最大時,m=0,點(xi,f(xi))為f(x)的圖象與x軸的交點(原點除外);
∵函數(shù)f(x)=sin3x的周期為$\frac{2π}{3}$,
故[-2π,2π]包含6個周期,
所以滿足$\frac{f({x}_{i})}{{x}_{i}}=m$的點(xi,f(xi))共有12個,
即n的最大值為12.
故選:B.

點評 本題主要考查了三角函數(shù)的化簡以及正弦函數(shù)的圖象與直線斜率公式的應用問題,抽象符號容量大,不易理解,是綜合性題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.如圖是某幾何體的三視圖,則該幾何體的表面積為63.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知曲線y=Asinωx+a(A>0,ω>0)在區(qū)間$[0,\frac{2π}{ω}]$上截直線y=2及y=-1所得的弦長相等且不為0,則a的值是(  )
A.$\frac{1}{2}$B.1C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為30°,求|$\overrightarrow{a}$+$\overrightarrow$|,|$\overrightarrow{a}$-$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在等差數(shù)列{an}中,Sn為它的前n項和,若a1>0,S16>0,S17<0,則當Sn最大時,n的值為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=2sinωx,其中常數(shù)ω>0.
(Ⅰ)令ω=1,求函數(shù)$F(x)=f(x)+{[f(x+\frac{π}{2})]}^{2}$在$[-\frac{π}{2},0]$上的最大值;
(Ⅱ)若函數(shù)$g(x)=2-f(x)+2\sqrt{3}cosωx$的周期為π,求函數(shù)g(x)的單調遞增區(qū)間,并直接寫出g(x)在$[\frac{3π}{4},\frac{23π}{4}]$的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.雙曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1的左右焦點分別為F1、F2,雙曲線上的點P到F2的距離為12,則P到F1的距離為2或22 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.計算:求$\underset{lim}{x→0}$$\frac{({∫}_{0}^{x}{e}^{{t}^{2}}dt)^{2}}{{∫}_{0}^{x}t{e}^{2{t}^{2}}dt}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如圖,已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點為A,O為坐標原點,以A為圓心的圓與雙曲線C的某漸近線交于兩點P,Q,若∠PAQ=60°,且$\overrightarrow{OQ}$=3$\overrightarrow{OP}$,則雙曲線的離心率為$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

同步練習冊答案