精英家教網 > 高中數學 > 題目詳情
19.已知函數f(x)=2sinωx,其中常數ω>0.
(Ⅰ)令ω=1,求函數$F(x)=f(x)+{[f(x+\frac{π}{2})]}^{2}$在$[-\frac{π}{2},0]$上的最大值;
(Ⅱ)若函數$g(x)=2-f(x)+2\sqrt{3}cosωx$的周期為π,求函數g(x)的單調遞增區(qū)間,并直接寫出g(x)在$[\frac{3π}{4},\frac{23π}{4}]$的零點個數.

分析 (Ⅰ)根據函數f(x)=2sinωx,ω=1,化簡F(x)轉化為二次函數求解.
(Ⅱ)利用輔助角公式化簡成為y=Asin(ωx+φ)的形式,函數$g(x)=2-f(x)+2\sqrt{3}cosωx$的周期為π,再利用周期公式求ω,將內層函數看作整體,放到正弦函數的增區(qū)間上,解不等式得函數的單調遞增區(qū)間;(2)x∈$[\frac{3π}{4},\frac{23π}{4}]$時,求出內層函數的取值范圍,結合三角函數的圖象和性質,可得零點個數.

解答 解:(Ⅰ)函數f(x)=2sinωx,ω=1時,則f(x)=2sinx,
那么:函數$F(x)=f(x)+{[f(x+\frac{π}{2})]}^{2}$=2sinx+4cos2x=4-4sin2x+2sinx,
令t=sinx,
∵x在$[-\frac{π}{2},0]$上,
∴-1≤t≤0
則函數F(x)轉化為h(t)=-4t2+2t+4,
對稱軸t=$\frac{1}{4}$,
∵-1≤t≤0,
∴h(t)的最大值為h(0)max=4,即ω=1,求函數$F(x)=f(x)+{[f(x+\frac{π}{2})]}^{2}$在$[-\frac{π}{2},0]$上的最大值為4.
(Ⅱ)$g(x)=2-f(x)+2\sqrt{3}cosωx$=2-2sinωx+$2\sqrt{3}$cosωx,
∵周期為π,即T=$\frac{2π}{ω}=π$,
解得:ω=2
∴函數g(x)=2-2sin2x+$2\sqrt{3}$cos2x=2-4sin(2x-$\frac{π}{3}$)=4sin(2x+$\frac{2π}{3}$)+2.
∵2x+$\frac{2π}{3}$)∈[2k$π-\frac{π}{2}$,$,2kπ+\frac{π}{2}$]是單調遞增區(qū)間,即2k$π-\frac{π}{2}$≤2x+$\frac{2π}{3}$≤$,2kπ+\frac{π}{2}$
解得:$kπ-\frac{7π}{12}$≤x≤$kπ-\frac{π}{12}$
函數g(x)的單調遞增區(qū)間位[$kπ-\frac{7π}{12}$,$kπ-\frac{π}{12}$],k∈Z.
令g(x)=0,即4sin(2x+$\frac{2π}{3}$)+2=0,
解得:2x+$\frac{2π}{3}$=2kπ-$\frac{π}{6}$或者2x+$\frac{2π}{3}$=2kπ-$\frac{5π}{6}$,k∈Z.
∵x在$[\frac{3π}{4},\frac{23π}{4}]$上.
當k取2,3…6時,2x+$\frac{2π}{3}$=2kπ-$\frac{π}{6}$滿足要求.
當k取2,3…6時,2x+$\frac{2π}{3}$=2kπ-$\frac{5π}{6}$滿足要求.
故得g(x)在$[\frac{3π}{4},\frac{23π}{4}]$上有10零點個數.

點評 本題主要考查對三角函數的化簡能力和三角函數的圖象和性質的運用,利用三角函數公式將函數進行化簡是解決本題的關鍵.屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

9.已知F1,F2是橢圓$\frac{x^2}{25}+\frac{y^2}{9}$=1的兩個焦點,過F1作直線與橢圓相交于M,N兩點,則△MNF2的周長為20.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.若Sn=sin$\frac{π}{7}+sin\frac{2π}{7}+…+sin\frac{nπ}{7}(n∈{N^*})$,則在S1,S2,…,S2017中,正數的個數是(  )
A.143B.286C.1731D.2000

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.設z1、z2∈C,則“z1+z2是實數”是“z1與z2共軛”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.函數$f(x)=cos(3x+\frac{5π}{2})$,滿足$\frac{f({x}_{i})}{{x}_{i}}=m$,其中${x}_{i}∈[-2π,2π],i=1,2,…,n,n∈{N}^{*}$,則n的最大值為( 。
A.13B.12C.10D.8

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.設O-ABC是正三棱錐,G1是△ABC的重心,G是OG1上的一點,且OG=3GG1,若,則 $\overrightarrow{OG}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,則(x,y,z)為( 。
A.($\frac{1}{4}$,$\frac{1}{4}$,$\frac{1}{4}$)B.($\frac{3}{4}$,$\frac{3}{4}$,$\frac{3}{4}$)C.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$)D.($\frac{2}{3}$,$\frac{2}{3}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.如圖所示,已知OA⊥?ABCD所在的平面,P、Q分別是AB,OC的中點,求證:PQ∥平面OAD.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.命題:若x+y≠5則x≠2或y≠3(  )
A.真命題B.假命題C.無法判斷真假D.不確定

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.向量$\overrightarrow a$=(cosθ,sinθ),$\overrightarrow b$=(1,$\sqrt{3}$),則|${\overrightarrow a$-2$\overrightarrow b}$|的取值范圍是[3,5].

查看答案和解析>>

同步練習冊答案