分析 (Ⅰ)根據函數f(x)=2sinωx,ω=1,化簡F(x)轉化為二次函數求解.
(Ⅱ)利用輔助角公式化簡成為y=Asin(ωx+φ)的形式,函數$g(x)=2-f(x)+2\sqrt{3}cosωx$的周期為π,再利用周期公式求ω,將內層函數看作整體,放到正弦函數的增區(qū)間上,解不等式得函數的單調遞增區(qū)間;(2)x∈$[\frac{3π}{4},\frac{23π}{4}]$時,求出內層函數的取值范圍,結合三角函數的圖象和性質,可得零點個數.
解答 解:(Ⅰ)函數f(x)=2sinωx,ω=1時,則f(x)=2sinx,
那么:函數$F(x)=f(x)+{[f(x+\frac{π}{2})]}^{2}$=2sinx+4cos2x=4-4sin2x+2sinx,
令t=sinx,
∵x在$[-\frac{π}{2},0]$上,
∴-1≤t≤0
則函數F(x)轉化為h(t)=-4t2+2t+4,
對稱軸t=$\frac{1}{4}$,
∵-1≤t≤0,
∴h(t)的最大值為h(0)max=4,即ω=1,求函數$F(x)=f(x)+{[f(x+\frac{π}{2})]}^{2}$在$[-\frac{π}{2},0]$上的最大值為4.
(Ⅱ)$g(x)=2-f(x)+2\sqrt{3}cosωx$=2-2sinωx+$2\sqrt{3}$cosωx,
∵周期為π,即T=$\frac{2π}{ω}=π$,
解得:ω=2
∴函數g(x)=2-2sin2x+$2\sqrt{3}$cos2x=2-4sin(2x-$\frac{π}{3}$)=4sin(2x+$\frac{2π}{3}$)+2.
∵2x+$\frac{2π}{3}$)∈[2k$π-\frac{π}{2}$,$,2kπ+\frac{π}{2}$]是單調遞增區(qū)間,即2k$π-\frac{π}{2}$≤2x+$\frac{2π}{3}$≤$,2kπ+\frac{π}{2}$
解得:$kπ-\frac{7π}{12}$≤x≤$kπ-\frac{π}{12}$
函數g(x)的單調遞增區(qū)間位[$kπ-\frac{7π}{12}$,$kπ-\frac{π}{12}$],k∈Z.
令g(x)=0,即4sin(2x+$\frac{2π}{3}$)+2=0,
解得:2x+$\frac{2π}{3}$=2kπ-$\frac{π}{6}$或者2x+$\frac{2π}{3}$=2kπ-$\frac{5π}{6}$,k∈Z.
∵x在$[\frac{3π}{4},\frac{23π}{4}]$上.
當k取2,3…6時,2x+$\frac{2π}{3}$=2kπ-$\frac{π}{6}$滿足要求.
當k取2,3…6時,2x+$\frac{2π}{3}$=2kπ-$\frac{5π}{6}$滿足要求.
故得g(x)在$[\frac{3π}{4},\frac{23π}{4}]$上有10零點個數.
點評 本題主要考查對三角函數的化簡能力和三角函數的圖象和性質的運用,利用三角函數公式將函數進行化簡是解決本題的關鍵.屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 143 | B. | 286 | C. | 1731 | D. | 2000 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 13 | B. | 12 | C. | 10 | D. | 8 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ($\frac{1}{4}$,$\frac{1}{4}$,$\frac{1}{4}$) | B. | ($\frac{3}{4}$,$\frac{3}{4}$,$\frac{3}{4}$) | C. | ($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$) | D. | ($\frac{2}{3}$,$\frac{2}{3}$,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com