分析 (1)利用向量的線性運算,即可用$\overrightarrow{a}$,$\overrightarrow$分別表示向量$\overrightarrow{AB}$,$\overrightarrow{EB}$;
(2)若$\overrightarrow{AF}$=t$\overrightarrow{AD}$,利用$\overrightarrow{FB}$,$\overrightarrow{EB}$共線,求實數(shù)t的值.
解答 解:(1)由題意,D為BC的中點,且$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{AC}$,
∵$\overrightarrow{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AD}$,
∴$\overrightarrow{AB}$=2$\overrightarrow$-$\overrightarrow{a}$,
∴$\overrightarrow{EB}$=$\overrightarrow{AB}$-$\overrightarrow{AE}$=2$\overrightarrow$-$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow{a}$=-$\frac{4}{3}$$\overrightarrow{a}$+2$\overrightarrow$;
(2)∵$\overrightarrow{AF}$=t$\overrightarrow{AD}$=t$\overrightarrow$,
∴$\overrightarrow{FB}$=$\overrightarrow{AB}$-$\overrightarrow{AF}$=-$\overrightarrow{a}$+(2-t)$\overrightarrow$,
∵$\overrightarrow{EB}$=-$\frac{4}{3}$$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{FB}$,$\overrightarrow{EB}$共線,
∴$\frac{-1}{-\frac{4}{3}}=\frac{2-t}{2}$,
∴t=$\frac{1}{2}$.
點評 本題考查向量的線性運算,考查向量共線條件的運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -4 | C. | -6 | D. | -10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,3) | B. | (-$\frac{1}{2}$,2) | C. | (-$\frac{2}{3}$,4) | D. | (-$\frac{5}{9}$,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 360 | B. | 336 | C. | 300 | D. | 280 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com