12.設(shè)集合A={x∈Z|(x+1)(x-4)≤0},B={x|x≤a},若A∪B=B,則a的值可以是( 。
A.1B.2C.3D.4

分析 化簡A,利用B={x|x≤a},A∪B=B,求出a的值.

解答 解:A={x∈Z|(x+1)(x-4)≤0}={-1,0,1,2,3,4},
∵A∪B=B,
∴A⊆B,
∵B={x|x≤a},∴a≥4,
故選D.

點評 此題考查了子集與集合的運算,考查不等式的解法,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,菱形ABCD與等邊△PAD所在的平面相互垂直,AD=2,∠DAB=60°.
(Ⅰ)證明:AD⊥PB;
(Ⅱ)求三棱錐C-PAB的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,a、b、c分別是角A、B、C的對邊,△ABC的面積為S,(a2+b2)tanC=8S,則$\frac{si{n}^{2}A+si{n}^{2}B}{si{n}^{2}C}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$a=\int_0^π{2sin\frac{x}{2}}cos\frac{x}{2}dx$,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=alnx+$\frac{1}{x}$-bx+1.
(1)若2a-b=4,則當(dāng)a>2時,討論f(x)單調(diào)性;
(2)若b=-1,F(xiàn)(x)=f(x)-$\frac{5}{x}$,且當(dāng)a≥-4時,不等式F(x)≥2在區(qū)間[1,4]上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-a(a∈R)與函數(shù)$F(x)=x+\frac{2}{x}$有公共切線.
(Ⅰ)求a的取值范圍;
(Ⅱ)若不等式xf(x)+e>2-a對于x>0的一切值恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在極坐標(biāo)系中,已知點A(2,$\frac{π}{2}$),B(1,-$\frac{π}{3}$),圓O的極坐標(biāo)方程為ρ=4sinθ.
(Ⅰ)求直線AB的直角坐標(biāo)方程;
(Ⅱ)求圓O的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.Sn是數(shù)列{an}的前n項和,Sn=3an-2a1,a3=$\frac{1}{4}$,bn=anlnan,則數(shù)列{bn}的最小項是( 。
A.第3項B.第4項C.第5項D.第6項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線x+y=m(m>0)與圓x2+y2=1相交于P,Q兩點,且∠POQ=120°(其中O為原點),那么m的值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案