分析 求出兩直線交點(diǎn),由直線l1:y=kx+1與l2:x-y-1=0的交點(diǎn)在第一象限內(nèi),得到交點(diǎn)的橫、縱坐標(biāo)都大于0,由此能求出k的取值范圍,再根據(jù)充要條件的定義判斷即可
解答 解:∵直線l1:y=kx-1與l2:x+y-1=0的交點(diǎn)在第一象限內(nèi),
聯(lián)立$\left\{\begin{array}{l}{y=kx-1}\\{x+y-1=0}\end{array}\right.$,得x=$\frac{2}{k+1}$,y=$\frac{k-1}{k+1}$,
∴$\left\{\begin{array}{l}{\frac{2}{k+1}>0}\\{\frac{k-1}{k+1}>0}\end{array}\right.$,解得k>1.
∴k直線l1:y=kx-1與直線l2:x+y-1=0的交點(diǎn)位于第一象限的充要條件是k>1.
故答案為:k>1
點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意直線的交點(diǎn)坐標(biāo)的求法及性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{2}$ | B. | 向右平移$\frac{π}{2}$ | C. | 向左平移$\frac{π}{4}$ | D. | 向右平移$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[-2,2\sqrt{5}]$ | B. | [-2,0] | C. | $[-2\sqrt{5},2]$ | D. | $[\frac{{2\sqrt{5}}}{5},1]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | -$\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 為定值8 | B. | 為定值4 | C. | 為定值2 | D. | 不是定值 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com