17.如圖,在四棱錐P-ABCD中,側(cè)面PAB⊥底面ABCD,△PAB為正三角形.AB⊥AD,CD⊥AD,點E、M為線段BC、AD的中點,F(xiàn),G分別為線段PA,AE上一點,且AB=AD=2,PF=2FA.
(1)確定點G的位置,使得FG∥平面PCD;
(2)試問:直線CD上是否存在一點Q,使得平面PAB與平面PMQ所成銳二面角的大小為30°,若存在,求DQ的長;若不存在,請說明理由.

分析 (1)在AD上取AN=$\frac{1}{3}$AD,過N作NG∥DC,交AE于G,連結(jié)FG,F(xiàn)N,利用平面與平面平行的判定定理證明平面FNG∥平面PCD,推出FG∥平面PCD.
(2)作PO⊥AB于O,BA所在直線為x軸,OP所在直線為z軸,在平面ABCD內(nèi)作AB的垂線為y軸,求出平面PAB的法向量,平面PMQ的法向量,利用平面PAB與平面PMQ所成銳二面角的大小為30°,求解得λ推出CD的大小.

解答 解:(1)在AD上取AN=$\frac{1}{3}$AD,過N作NG∥DC,交AE于G,連結(jié)FG,F(xiàn)N,
∵PF=2FA.可得FA=$\frac{1}{3}$PA,所以FN∥PD,又NG∥DC,F(xiàn)N∩NG=N,PD∩DC=D,
可得平面FNG∥平面PCD,F(xiàn)G?平面FNG,所以FG∥平面PCD.
(2)作PO⊥AB于O,BA所在直線為x軸,OP所在直線為z軸,在平面ABCD內(nèi)作AB的垂線為y軸,如圖:平面PAB的法向量為:$\overrightarrow{n}$=(0,1,0),
A(1,0,0),Q(λ,2,0),M(1,1,0),P(0,0,$\sqrt{3}$),
則$\overrightarrow{MP}$=(-1,-1,$\sqrt{3}$),$\overrightarrow{MQ}$=(λ-1,1,0),
設(shè)平面PMQ的法向量為:$\overrightarrow{m}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{MP}=0}\\{\overrightarrow{m}•\overrightarrow{MQ}=0}\end{array}\right.$,可得:$\left\{\begin{array}{l}{-x-y+\sqrt{3}z=0}\\{(λ-1)x+y=0}\end{array}\right.$,令x=1,則y=1-λ,z=$\frac{2-λ}{\sqrt{3}}$,
平面PAB與平面PMQ所成銳二面角的大小為30°,
可得:cos30°=$|\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}|$=$\frac{|1-λ|}{\sqrt{1+(1-λ)^{2}+(\frac{2-λ}{\sqrt{3}})^{2}}}$=$\frac{\sqrt{3}}{2}$,
解得λ=3.
此時DQ=2在CD的延長線上,或DQ=$\frac{1}{3}$在CD線段上.

點評 本題考查直線與平面平行的判定定理以及二面角的平面角的求法,考查空間想象能力以及計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(文)試卷(解析版) 題型:填空題

下列各小題中,的充分必要條件的是___________.

有兩個不同的零點;

是偶函數(shù);

;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知棱長為2的正方體ABCD-A1B1C1D1,球O與該正方體的各個面相切,則平面ACB1截此球所得的截面的面積為( 。
A.$\frac{8π}{3}$B.$\frac{5π}{3}$C.$\frac{4π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知f(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x,x<0}\\{f(x-1)+2,x≥0}\end{array}\right.$,則f(2)=(  )
A.4B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在邊長是2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為AB,A1C的中點.
(Ⅰ)證明:EF∥平面ADD1A1
(Ⅱ)求二面角A1-EC-D大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在平面直角坐標系xOy中,曲線C的方程為y=3+$\sqrt{-{x}^{2}+8x-15}$.
(1)寫出曲線C的一個參數(shù)方程;
(2)在曲線C上取一點P,過點P作x軸,y軸的垂線,垂足分別為A,B,求矩形OAPB的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,四棱錐P-ABCD中,O為AD的中點,AD∥BC,CD⊥平面PAD,PA=PD=5.
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)若AD=8,BC=4,CD=3,求平面PAB與平面PCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若角α的終邊與單位圓的交點為$P(\frac{12}{13},-\frac{5}{13})$,則tanα=( 。
A.$\frac{5}{12}$B.$-\frac{5}{12}$C.$-\frac{12}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在棱臺ABC-FED中,△DEF與△ABC分別是棱長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,點G為△ABC的重心,N為AB中點,$\overrightarrow{AM}$=λ$\overrightarrow{AF}$(λ∈R,λ>0),
(1)當$λ=\frac{2}{3}$時,求證:GM∥平面DFN;
(2)若直線MN與CD所成角為$\frac{π}{3}$,試求二面角M-BC-D的余弦值.

查看答案和解析>>

同步練習冊答案