1.若圓x2+y2+dx+ey+f=0與兩坐標(biāo)軸都相切,則常數(shù)d,e,f之間的關(guān)系是( 。
A.d≠0且e2=4fB.d≠0且e2≠4fC.d=e且e2≠4fD.d2=e2=4f>0

分析 把圓的一般方程化為圓的標(biāo)準(zhǔn)方程,結(jié)合條件可得|$\fracnbh9pae{2}$|=|$\frac{e}{2}$|=r,由此求得常數(shù)d,e,f之間的關(guān)系.

解答 解:圓x2+y2+dx+ey+f=0,即 ${(x+\frac9wl9vzj{2})}^{2}$+${(y+\frac{e}{2})}^{2}$=$\frac{oha4mun^{2}{+e}^{2}-4f}{4}$,表示以(-$\fracwx9fjcn{2}$,-$\frac{e}{2}$)為圓心、半徑等于$\frac{1}{2}$$\sqrt{dee5bb9^{2}{+e}^{2}-4f}$的圓,
再根據(jù)此圓與兩坐標(biāo)軸都相切,
則常數(shù)d,e,f之間的關(guān)系為|$\fracnd4aeti{2}$|=|$\frac{e}{2}$|=r,即 d2 =e2 =4f>0,
故選:D.

點(diǎn)評(píng) 本題主要考查圓的標(biāo)準(zhǔn)方程和一般方程,直線和圓的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.以直角坐標(biāo)系xOy的坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+t}\\{y=2-t}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=$\frac{4}{\sqrt{co{s}^{2}θ+1}}$.
(1)求直線l及曲線C的普通方程;
(2)設(shè)P(2,2),直線l與曲線C相交于A、B兩點(diǎn),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.微信運(yùn)動(dòng)和運(yùn)動(dòng)手環(huán)的普及,增強(qiáng)了人民運(yùn)動(dòng)的積極性,每天一萬(wàn)步稱為一種健康時(shí)尚,某中學(xué)在全校范圍內(nèi)內(nèi)積極倡導(dǎo)和督促師生開(kāi)展“每天一萬(wàn)步”活動(dòng),經(jīng)過(guò)幾個(gè)月的扎實(shí)落地工作后,學(xué)校想了解全校師生每天一萬(wàn)步的情況,學(xué)校界定一人一天走路不足4千步為不健康生活方式,不少于16千步為超健康生活方式者,其他為一般生活方式者,學(xué)校委托數(shù)學(xué)組調(diào)查,數(shù)學(xué)組采用分層抽樣的辦法去估計(jì)全校師生的情況,結(jié)合實(shí)際及便于分層抽樣,認(rèn)定全校教師人數(shù)為200人,高一學(xué)生人數(shù)為700人,高二學(xué)生人數(shù)600人,高三學(xué)生人數(shù)500,從中抽取n人作為調(diào)查對(duì)象,得到了如圖所示的這n人的頻率分布直方圖,這n人中有20人被學(xué)校界定為不健康生活方式者.
(1)求這次作為抽樣調(diào)查對(duì)象的教師人數(shù);
(2)根據(jù)頻率分布直方圖估算全校師生每人一天走路步數(shù)的中位數(shù)(四舍五入精確到整數(shù)步);
(3)校辦公室欲從全校師生中速記抽取3人作為“每天一萬(wàn)步”活動(dòng)的慰問(wèn)對(duì)象,計(jì)劃學(xué)校界定不健康生活方式者鞭策性精神鼓勵(lì)0元,超健康生活方式者表彰獎(jiǎng)勵(lì)20元,一般生活方式者鼓勵(lì)性獎(jiǎng)勵(lì)10元,利用樣本估計(jì)總體,將頻率視為概率,求這次校辦公室慰問(wèn)獎(jiǎng)勵(lì)金額X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知圓C:(x-3)2+(y-4)2=25,圓C上的點(diǎn)到直線l:3x+4y+m=0(m<0)的最短距離為1,若點(diǎn)N(a,b)在直線l位于第一象限的部分,則$\frac{1}{a}+\frac{1}$的最小值為$\frac{{7+4\sqrt{3}}}{55}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若輸入的值是-2,則輸出的值是( 。
A.2B.4C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某校高三參加第一次診斷考試后,隨機(jī)抽取了10名學(xué)生的數(shù)學(xué)成績(jī)(單位:分),用莖葉圖列舉出來(lái)如圖.
(1)求抽取樣本的平均數(shù)$\overline{x}$和樣本方差s2;
(2)對(duì)所有學(xué)生得成績(jī)統(tǒng)計(jì)發(fā)現(xiàn),數(shù)學(xué)成績(jī)X服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)$\overline{x}$,σ2近似為樣本方差s2,若從所有學(xué)生中隨機(jī)抽取1名,求該生數(shù)學(xué)成績(jī)?cè)冢?9.7,120.3)的概率.
附:$\sqrt{106}$≈10.30,P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),A($\frac{7}{2}$,4),則|PA|+|PF|的最小值是( 。
A.$\frac{7}{2}$B.5C.$\frac{9}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x+$\frac{4}{x}$
(1)判斷f(x)的奇偶性;
(2)判斷f(x)在(2,+∞)上的單調(diào)性并予以證明;
(3)求f(x)在[3,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,ABC-A'B'C'為直三棱柱,M為CC的中點(diǎn),N為AB的中點(diǎn),AA'=BC=3,AB=2,AC=$\sqrt{13}$.
(1)求證:CN∥平面AB'M;
(2)求三棱錐B'-AMN的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案