15.不等式組$\left\{\begin{array}{l}{x+y≥1}\\{x-2y≤4}\end{array}\right.$的解集記為D,有下面四個(gè)命題:
p1:?(x,y)∈D,x+2y≥-2
p2:?(x,y)∈D,x+2y≥-2
p3:?(x,y)∈D,x+2y≤3
p4:?(x,y)∈D,x+2y≤-1
其中的真命題是p1,p2.(用命題編號(hào)作答)

分析 作出不等式組 $\left\{\begin{array}{l}x+y≥1\\ x-2y≤4\end{array}\right.$的表示的區(qū)域D,根據(jù)線性規(guī)劃的應(yīng)用結(jié)合特稱命題和全稱命題的定義和性質(zhì)對(duì)四個(gè)選項(xiàng)逐一分析即可.

解答 解:作出不等式組$\left\{\begin{array}{l}x+y≥1\\ x-2y≤4\end{array}\right.$表示的區(qū)域:

由圖知,區(qū)域D為直線x+y=1與x-2y=4相交的上部角型區(qū)域,
顯然,區(qū)域D所有的部分都在x+2y=-2的上方,故p1:?(x,y)∈D,x+2y≥-2成立;
故p1正確,p2錯(cuò)誤,
區(qū)域D有一部分在x+2y=3的下方,故p3:?(x,y)∈D,x+2y≤3正確,
區(qū)域D全部在x+2y=-1的上方,故p4:?(x,y)∈D,x+2y≤-1錯(cuò)誤.
綜上所述p1,p2正確,
故答案為:p1,p2

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,利用線性規(guī)劃的應(yīng)用,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.考查學(xué)生的運(yùn)算和推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)列{an}為等差數(shù)列,首項(xiàng)a1=1,公差d=2,則a5=( 。
A.6B.9C.25D.31

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若直線y=x+b與曲線y=3-$\sqrt{4x-{x}^{2}}$有公共點(diǎn),則b的取值范圍是( 。
A.[1-$\sqrt{2}$,1+$\sqrt{2}$]B.[1-$\sqrt{2}$,3]C.[1-2$\sqrt{2}$,3]D.[-1,1+$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=(2k-1)lnx+$\frac{k}{x}$+2x,有以下命題:
①當(dāng)k=-$\frac{1}{2}$時(shí),函數(shù)f(x)在(0,$\frac{1}{2}}$)上單調(diào)遞增;
②當(dāng)k≥0時(shí),函數(shù)f(x)在(0,+∞)上有極大值;
③當(dāng)-$\frac{1}{2}$<k<0時(shí),函數(shù)f(x)在($\frac{1}{2}$,+∞)上單調(diào)遞減;
④當(dāng)k<-$\frac{1}{2}$時(shí),函數(shù)f(x)在(0,+∞)上有極大值f(${\frac{1}{2}}$),有極小值f(-k).
其中不正確命題的序號(hào)是( 。
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.計(jì)算:$\overrightarrow{a}$+$\overrightarrow$-$\frac{1}{2}$(2$\overrightarrow{a}$-$\overrightarrow$)=$\frac{3}{2}\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若直線3x-y+c=0,向右平移1個(gè)單位長(zhǎng)度再向下平移1個(gè)單位,平移后與圓x2+y2=10相切,則c的值為( 。
A.14或-6B.12或-8C.8或-12D.6或-14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.計(jì)算(lg$\frac{1}{4}$-lg25)×100${\;}^{\frac{1}{2}}$-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí),f(x)=x3+x+1,則當(dāng)x<0時(shí)解析式為f(x)=x3+x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a1=3,a4=24,則S6=( 。
A.93B.189C.99D.195

查看答案和解析>>

同步練習(xí)冊(cè)答案