4.(1)等差數(shù)列{an}的前n項(xiàng)和記為Sn,已知a10=30,a20=50,Sn=242,求n.
(2)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S10=10,S30=130,求S20

分析 (1)由題已知a10=30,a20=50,Sn=242可運(yùn)用等差數(shù)列的定義(化為基本量a1,d),可建立關(guān)a1,d的方程,再利用求和公式求解可得.
(2)由等比數(shù)列的性質(zhì)可得,S10,S20-S10,S30-S20成等比數(shù)列,即(S20-S102=S10•(S30-S20),代入可求.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
∵a10=30,a20=50,
∴$\left\{\begin{array}{l}{{a}_{1}+9d=30}\\{{a}_{1}+19d=50}\end{array}\right.$.
解得$\left\{\begin{array}{l}{{a}_{1}=12}\\{d=2}\end{array}\right.$,
由Sn=242,可得:12n+$\frac{2n(n-1)}{2}$=242,
化為:n2+11n-242=0,
解得n=11或n=-22(舍去).
(2)由等比數(shù)列的性質(zhì)可得,S10,S20-S10,S30-S20成等比數(shù)列,
∴(S20-S102=S10•(S30-S20),
∴(S20-10)2=10•(130-S20),
∴S20=40.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,等比數(shù)列的性質(zhì)(若Sn為等比數(shù)列的前n項(xiàng)和,且Sk,S2k-Sk,S3k-S2k不為0,則其成等比數(shù)列)的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n-1,數(shù)列{bn}滿足b1=2,bn+1-2bn=8an
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為T(mén)n,是否存在常數(shù)λ,使得不等式(-1)nλ<1+$\frac{{T}_{n}-6}{{T}_{n+1}-6}$恒成立?若存在,求出λ的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知某棱錐的三視圖如圖所示,則該棱錐的表面積為(  )
A.2+$\sqrt{5}$B.3+$\frac{\sqrt{5}}{2}$C.2+$\frac{\sqrt{5}}{2}$D.3+$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合U={x|y=$\sqrt{x}$},A={x|3≤2x-1<5},則∁UA=( 。
A.(0,2)B.[0,2)∪[3,+∞)C.[1,+∞)D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=|x-1|-2|x+a|.
(1)當(dāng)a=1時(shí),求不等式f(x)>1的解集;
(2)若不等式f(x)>0,在x∈[2,3]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤(rùn)分別為3萬(wàn)元、4萬(wàn)元,則該企業(yè)每天可獲得最大利潤(rùn)為多少?
原料限額
A(噸)3212
B(噸)128

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若函數(shù)f(x)為R上的偶函數(shù),且在[0,+∞)內(nèi)是增函數(shù),又f(2)=0,則 f(x)<0的解集為( 。
A.(-2,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.有三個(gè)數(shù)成等比數(shù)列,它們的積為27,它們的和為13.求這三個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)f(x)是定義在(-∞,+∞)上的函數(shù),對(duì)一切x∈R均有f(x)+f(x+3)=0,且當(dāng)-1<x≤1時(shí),f(x)=2x-3.
(1)求f(x)的周期;
(2)求當(dāng)2<x≤4時(shí),f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案