17.如圖所示,△ABC內(nèi)接于圓,AD切圓于A,E是BA延長(zhǎng)線上一點(diǎn),連接CE交AD于D點(diǎn).若D是CE的中點(diǎn).求證:AC2=AB•AE.

分析 過(guò)E作EF∥AC交AD的延長(zhǎng)線于點(diǎn)F.證明△ACD≌△FED,得出AC=EF,△ABC∽△EFA,得出$\frac{AB}{AC}=\frac{EF}{AE}$,即可證明結(jié)論.

解答 證明:過(guò)E作EF∥AC交AD的延長(zhǎng)線于點(diǎn)F.
∵CD=DE,∴△ACD≌△FED,
∴AC=EF.
∵AD切圓于A,∴∠B=∠CAF,
∵EF∥AC,
∴∠BAC=∠AEF,∠CAD=∠F,
∴∠B=∠F,
∴△ABC∽△EFA.
∴$\frac{AB}{AC}=\frac{EF}{AE}$,
∴AC•EF=AB•AE,∴AC2=AB•AE.

點(diǎn)評(píng) 本題考查三角形全等的證明,考查三角形相似的判定與性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.從一副沒(méi)有大小王的52張撲克牌中隨機(jī)抽取1張,事件A為“抽得紅桃8”,事件B為“抽得為黑桃”,則事件“A或B”發(fā)生的概率值是$\frac{7}{26}$(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知$f(x)=\frac{1}{2}{x^2}+2mlnx-(2+m)x,m∈R$.
(I)當(dāng)m>0時(shí),討論f(x)的單調(diào)性;
(II)若對(duì)任意的a,b∈(0,+∞)且a>b有f(a)-f(b)>m(b-a)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知拋物線C1:y2=4x的焦點(diǎn)F也是橢圓${C_2}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一個(gè)焦點(diǎn),C1與C2的公共弦長(zhǎng)為$2\sqrt{6}$,過(guò)點(diǎn)F的直線l與C1相交于A,B兩點(diǎn),與C2相交于C,D兩點(diǎn),且$\overrightarrow{AC}$與$\overrightarrow{BD}$同向.
(1)求C2的方程;
(2)若|AC|=|BD|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在如圖所示的四棱錐S-ABCD中,∠DAB=∠ABC=90°,SA=AB=BC=1,AD=3.
(1)在棱SA上確定一點(diǎn)M,使得BM∥平面SCD,保留作圖痕跡,并證明你的結(jié)論.
(2)當(dāng)SA⊥平面ABCD且點(diǎn)E為線段BS的三等分點(diǎn)(靠近B)時(shí),求三棱錐S-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的兩條漸進(jìn)線為l1、l2,且l1與x軸所成的夾角為30°,且雙曲線的焦距為$4\sqrt{2}$.
(1)求橢圓C的方程;
(2)過(guò)橢圓C的右焦點(diǎn)F作直線l,l與橢圓C相交于A、B,與圓O:x2+y2=a2相交于D、E兩點(diǎn),當(dāng)△OAB的面積最大時(shí),求弦DE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.高三學(xué)生在新的學(xué)期里,剛剛搬入新教室,隨著樓層的升高,上下樓耗費(fèi)的精力增多,因此不滿意度升高,當(dāng)教室在第n層樓時(shí),上下樓造成的不滿意度為n,但高處空氣清新,嘈雜音較小,環(huán)境較為安靜,因此隨教室所在樓層升高,環(huán)境不滿意度降低,設(shè)教室在第n層樓時(shí),環(huán)境不滿意度為$\frac{8}{n}$,則同學(xué)們認(rèn)為最適宜的教室應(yīng)在(  )
A.2樓B.3樓C.4樓D.8樓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.袋中裝有大小完全相同,標(biāo)號(hào)分別為1,2,3,…,9的九個(gè)球,現(xiàn)從袋中隨機(jī)取出3個(gè)球,設(shè)ξ為這3個(gè)球的標(biāo)號(hào)相鄰的組數(shù)(例如:若取出球的標(biāo)號(hào)為3,4,5,則有兩組相鄰的標(biāo)號(hào)3,4和4,5,此時(shí)ξ的值是2),則隨機(jī)變量ξ的均值E(ξ)為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.由經(jīng)驗(yàn)得知,在學(xué)校食堂某窗口處排隊(duì)等候打飯的人數(shù)及其概率如下:
排隊(duì)人數(shù)012345人以上
概率0.10.160.30.30.10.04
則至多2個(gè)人排隊(duì)的概率為( 。
A.0.56B.0.44C.0.26D.0.14

查看答案和解析>>

同步練習(xí)冊(cè)答案