20.給出下列關(guān)系:(1)$\frac{1}{3}$∈R;(2)$\sqrt{5}$∈Q;(3)-3∉Z;(4)-$\sqrt{3}$∉N,其中正確的個(gè)數(shù)為2.

分析 根據(jù)數(shù)集的含義,即可得出結(jié)論.

解答 解:(1)$\frac{1}{3}$∈R,正確;(2)$\sqrt{5}$∉Q,錯(cuò)誤;(3)-3∉Z,錯(cuò)誤;(4)-$\sqrt{3}$∉N,正確,
故答案為2

點(diǎn)評(píng) 本題考查數(shù)集的含義,元素與集合的關(guān)系,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.直線l過點(diǎn)P0(-4,0),它的參數(shù)方程為$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù))與圓x2+y2=7相交于A,B兩點(diǎn),則弦長|AB|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若函數(shù)y=cos2x-asinx+b的最大值為0,最小值為-4,試求a與b的值,并求使y取得最大值和最小值時(shí)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=sin4ωx-cos4ωx+2sinωxcosωx(ω>0),點(diǎn)M,N是f(x)圖象的兩個(gè)相鄰的對(duì)稱中心,點(diǎn)H是f(x)圖象的一個(gè)最高點(diǎn),三角形MNH的面積為$\frac{\sqrt{2}π}{4}$.
(1)求ω的值以及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)銳角三角形ABC,邊c=2,所對(duì)角C滿足f(C)=1,求其面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.給出下列幾個(gè)命題:
①命題p:任意x∈R,都有cosx≤1,則“非p”:存在x0∈R,使得cosx0≤1.
②命題“若a>2且b>2,則a+b>4且ab>4”的否命題為假命題.
③空間任意一點(diǎn)O和不共線的三點(diǎn)A、B、C,若$\overrightarrow{OP}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$+$\overrightarrow{OC}$,則P、A、B、C四點(diǎn)共面.
④線性回歸方程y=bx+a對(duì)應(yīng)的直線一定經(jīng)過其樣本數(shù)據(jù)點(diǎn)(x1,y1)、(x2,y2)、…,(xn,yn)中的一個(gè).其中不正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知定義在R上的函數(shù)f(x)=|x+a|+|x|.
(Ⅰ)當(dāng)a=1時(shí),解不等式f(x)≥2;
(Ⅱ)若存在x∈R,使得f(x)<2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)g(x)對(duì)任意實(shí)數(shù)x都滿足g(x)=g(1-x),g(x)的最小值為-$\frac{9}{8}$且g(1)=-1.令f(x)=g(x+$\frac{1}{2}$)+mlnx+$\frac{9}{8}$(m∈R,x>0).
(1)求g(x)的表達(dá)式;
(2)若?x>0使f(x)≤0成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)1<m≤e,H(x)=f(x)-(m+1)x,證明:對(duì)?x1、x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}2x-y-1≥0\\ x-2y+1≤0\\ x+y-5≤0\end{array}\right.$,則當(dāng)z=ax+by(a>0,b>0)取得最小值2時(shí),a=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x∈(-∞,2]}\\{lo{g}_{2}x,x∈(2,+∞)}\end{array}\right.$,則滿足f(x)=3的x的值是( 。
A.log23B.8C.log23或8D.8或6

查看答案和解析>>

同步練習(xí)冊(cè)答案