8.已知函數(shù)f(x)=x2-$\frac{1}{{x}^{2}}$(x≠0),若實數(shù)a滿足f(log2a)+f(log${\;}_{\frac{1}{2}}$a)=2f(2),則實數(shù)a的值是4或$\frac{1}{4}$.

分析 先判斷函數(shù)為偶函數(shù),利用對數(shù)的運算法則進行化簡求解即可.

解答 解:函數(shù)f(x)為偶函數(shù),則f(log2a)+f(log${\;}_{\frac{1}{2}}$a)=2f(2),
等價為f(log2a)+f(-log2a)=2f(2),
即2f(log2a)=2f(2),
則f(log2a)=f(2),
則log2a=2或log2a=-2,
得a=4或$\frac{1}{4}$,
故答案為:4或$\frac{1}{4}$

點評 本題主要考查函數(shù)值的計算,根據(jù)條件判斷函數(shù)是偶函數(shù)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知△ABO中,延長BA到C,使AC=BA,D是將$\overrightarrow{OB}$分成2:1的一個分點,DC和OA交于E,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$
(1)用$\overrightarrow{a}$,$\overrightarrow$表示向量$\overrightarrow{OC}$,$\overrightarrow{DC}$.
(2)若$\overrightarrow{OE}$=λ$\overrightarrow{OA}$,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)y=f(x)+x3是R上的偶函數(shù),若f(1)=2,則f(-1)=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)$f(x)=2sin({x-\frac{π}{6}})$,x∈[-π,a]的值域為[-2,1],則實數(shù)a的取值范圍為$[{-\frac{π}{3},\frac{π}{3}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=\frac{x}{{2{e^x}}}+m$(e為自然對數(shù)的底數(shù),m∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)當$m=\frac{1}{e}$時,求證:?x>0,f(x)<x2lnx恒成立;
(3)討論關(guān)于x的方程|lnx|=f(x)的根的個數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知k,b∈R,設(shè)直線l:y=kx+b 是曲線y=ex+x的一條切線,則( 。
A.k<1,且b≤1B.k<1,且b≥1C.k>1,且b≤1D.k>1,且b≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.$(x+1){(x+\frac{a}{x})^6}$的展開式中,常數(shù)項為20,則實數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知一組數(shù)據(jù)為8,12,10,11,9.則這組數(shù)據(jù)方差為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知$|{\vec a}|=3,|{\vec b}|=4$,且$({2\vec a-\vec b})•({\vec a+2\vec b})≥4$,求$\vec a$與$\vec b$的夾角θ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案