4.已知函數(shù)f(x)=Asin(ωx+φ)(A≠0,ω>0,0<φ<$\frac{π}{2}$),若f($\frac{2π}{3}$)=-f(0),則ω的最小值為( 。
A.$\frac{3}{2}$B.1C.2D.$\frac{1}{2}$

分析 根據(jù)f($\frac{2π}{3}$)=-f(0),代入f(x)建立關(guān)系,0<φ<$\frac{π}{2}$,可得,-$\frac{π}{2}$<-φ<0,那么令π≤ω$\frac{2π}{3}$+φ$≤\frac{3π}{2}$,即可求解ω范圍.可得ω的最小值.

解答 解:函數(shù)f(x)=Asin(ωx+φ)(A≠0,ω>0,0<φ<$\frac{π}{2}$),
∵f($\frac{2π}{3}$)=-f(0),即sin(-φ)=sin(ω×$\frac{2π}{3}$+φ),
∵0<φ<$\frac{π}{2}$,
∴-$\frac{π}{2}$<-φ<0,
那么令π<ω×$\frac{2π}{3}$+φ$<\frac{3π}{2}$,
可得:$π-\frac{2πω}{3}<$φ$<\frac{3π}{2}-\frac{2πω}{3}$.
令$π-\frac{2πω}{3}=0$,解得:ω=$\frac{3}{2}$.
故選:A.

點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,利用三角函數(shù)特性,相鄰的兩個單調(diào)相反的區(qū)間存在值相等,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知x=${e}^{\frac{1}{6}}$(e為自然對數(shù)的底數(shù)),y=log52,z=log43,則下列結(jié)論正確的是( 。
A.x<y<zB.y<z<xC.z<y<xD.z<x<y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=2sin(2x-$\frac{π}{3}$)的圖象關(guān)于直線x=x0對稱,則|x0|的最小值為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知正項數(shù)列{an}中,a1=1,a2=2,$2{a_{n+1}}^2={a_{n+2}}^2+{a_n}^2$,則a6等于(  )
A.16B.8C.4D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=\frac{{ex-2{e^x}}}{{{e^{x+1}}}}$,g(x)=xlnx.
(Ⅰ)求函數(shù)g(x)在區(qū)間[2,4]上的最小值;
(Ⅱ)證明:對任意m,n∈(0,+∞),都有g(shù)(m)≥f(n)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若復(fù)數(shù)z滿足($\sqrt{3}$+i)•z=4i,其中i為虛數(shù)單位,則z=(  )
A.1-$\sqrt{3}$iB.$\sqrt{3}$-iC.$\sqrt{3}$+iD.1+$\sqrt{3}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.執(zhí)行如圖所示的程序框圖,當(dāng)輸入的x為2017時,輸出的y=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a=0.80.8,b=0.80.9,c=1.20.8,則a、b、c的大小關(guān)系是(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知命題p:方程x2+mx+1=0有兩個不等的負(fù)實根,命題q:方程4x2+4(m-2)x+1=0無實根,
(1)若命題p為真,求實數(shù)m的取值范圍;
(2)若命題p和命題q一真一假,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案