【題目】已知橢圓的左頂點(diǎn)為,焦距為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線與橢圓的另一個交點(diǎn)為點(diǎn),與圓的另一個交點(diǎn)為點(diǎn),是否存在直線使得?若存在,求出直線的方程;若不存在,請說明理由.
【答案】(1).(2)直線不存在.見解析
【解析】
(1)據(jù)題意有,,則通過計算可得橢圓的標(biāo)準(zhǔn)方程;
(2)可先假設(shè)直線存在,可設(shè)直線的斜率為,則直線.根據(jù)及圓的性質(zhì)可知垂直平分.再根據(jù)點(diǎn)到直線的距離公式可得的關(guān)于的表達(dá)式,再解可得的關(guān)于的表達(dá)式.然后聯(lián)立直線與橢圓方程,消去整理可得一元二次方程,根據(jù)韋達(dá)定理有,.根據(jù)弦長公式可得的關(guān)于的另一個表達(dá)式.根據(jù)存在性則兩個表達(dá)式相等,如果值存在則直線存在;如果沒有值則直線不存在.
(1)由題意,可知,.則,.
橢圓的標(biāo)準(zhǔn)方程為.
(2)由題意,假設(shè)存在直線使得,可設(shè)直線的斜率為.
則直線.
,即點(diǎn)為線段中點(diǎn),
根據(jù)圓的性質(zhì),可知,且平分.
根據(jù)題意畫圖如下:
則.
在中,.
聯(lián)立直線與橢圓方程,可得:
,
消去,整理得.
則△.
,.
.
,整理,得.很明顯矛盾,
故直線不存在.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校需要從甲、乙兩名學(xué)生中選一人參加數(shù)學(xué)競賽,抽取了近期兩人次數(shù)學(xué)考試的成績,統(tǒng)計結(jié)果如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成績(分) | |||||
乙的成績(分) |
(1)若從甲、乙兩人中選出一人參加數(shù)學(xué)競賽,你認(rèn)為選誰合適?請說明理由.
(2)若數(shù)學(xué)競賽分初賽和復(fù)賽,在初賽中有兩種答題方案:
方案一:每人從道備選題中任意抽出道,若答對,則可參加復(fù)賽,否則被淘汰.
方案二:每人從道備選題中任意抽出道,若至少答對其中道,則可參加復(fù)賽,否則被潤汰.
已知學(xué)生甲、乙都只會道備選題中的道,那么你推薦的選手選擇哪種答題方條進(jìn)人復(fù)賽的可能性更大?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,過橢圓右焦點(diǎn)的直線與橢圓交于,兩點(diǎn),當(dāng)直線與軸垂直時,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線與軸不垂直時,在軸上是否存在一點(diǎn)(異于點(diǎn)),使軸上任意點(diǎn)到直線,的距離均相等?若存在,求點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形, 面, 為的中點(diǎn)。
(1)證明: 平面;
(2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元2020年春,我國湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國科研人員,在研究新型冠狀病毒某種疫苗的過程中,利用小白鼠進(jìn)行科學(xué)試驗(yàn).為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對小白鼠進(jìn)行做接種試驗(yàn).該試驗(yàn)的設(shè)計為:①對參加試驗(yàn)的每只小白鼠每天接種一次;②連續(xù)接種三天為一個接種周期;③試驗(yàn)共進(jìn)行3個周期.已知每只小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率均為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無關(guān).
(1)若某只小白鼠出現(xiàn)癥狀即對其終止試驗(yàn),求一只小白鼠至多能參加一個接種周期試驗(yàn)的概率;
(2)若某只小白鼠在一個接種周期內(nèi)出現(xiàn)2次或3次癥狀,則在這個接種周期結(jié)束后,對其終止試驗(yàn).設(shè)一只小白鼠參加的接種周期為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若, 是方程()的兩個不同的實(shí)數(shù)根,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P在拋物線上,且點(diǎn)P的橫坐標(biāo)為2,以P為圓心,為半徑的圓(O為原點(diǎn)),與拋物線C的準(zhǔn)線交于M,N兩點(diǎn),且.
(1)求拋物線C的方程;
(2)若拋物線的準(zhǔn)線與y軸的交點(diǎn)為H.過拋物線焦點(diǎn)F的直線l與拋物線C交于A,B,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國時代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,左上面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實(shí),圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)以及黃實(shí),并且利用勾股(股勾)朱實(shí)黃實(shí)弦實(shí),化簡得勾股弦,設(shè)勾股中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘,則落在黃色圖形內(nèi)的圖釘數(shù)大約為_______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com